We estimate costs and carbon intensities per usefor twenty low-utilisation household objects: the average is $13 per use and 1.3kg of CO2, respectively. Both are high numbers.
The biggest determinantis the number of uses per item. We fear that once purchased by a consumer, the average item on our list will be used just c20 times in its entire lifetime.
More extensive “sharing” will be enabled by drone delivery technologies, potentially saving $150bn of annual sales and 15MTpa of CO2 emissions across these 20 items items alone. Across the entire US economy the savings could reach $1trn and 100MT per year.
We have constructed a simple model to estimate the CO2 emissions of commercialising a gas resource, as a function of eight input variables: such as production techniques, methane leakage, sour gas processing, LNG liquefaction, LNG tanker distances and pipeline distances.
Energy return on energy invested is c20x across piped gas resources and c10x across LNG resources, compared with c7-10x for oil. This supports the rationale for oil-to-gas switching, as commercialising gas will likely emit 0-80% lower CO2 per boe; plus 15-20% lower combustion emissions.
Different resources are compared using our methodology. The lowest CO2 profile is seen for well-managed piped gas (e.g., Norway to Europe). Actual data on US LNG facilities and methane intensities have been added.
Download the modeland you can quickly compute approximate CO2 emissions for other resources.
We have constructed a simple model to estimate the CO2 emissions of commercialising an oil resource, as a function of a dozen input variables: such as flaring, methane leakage, gravity, sulphur content, production processes and transportation to market.
We estimate energy return on energy invested is c7-10xacross the entire oil industry, including upstream, midstream and downstream.
Different resources are compared using our methodology. Relative advantages are seen for large, well-managed offshore oilfields and shale. Relative disadvantages are seen for heavy crudes (e.g., Oil Sands, Mexican Heavy) and producers with low regard for flaring and methane emissions (e.g., Iran, Iraq). However, gas production is lower CO2.
This data-file quantifies the energy efficiency of fourteen different transportation types, in mpg, miles per kWh, passenger miles per kWh and CO2 intensity per passenger mile.
“Efficiency”is calculated using an apples-to-apples methodology, comparing real-world fuel consumption to equations of mechanics (i.e., stop-starts and air resistance, per Tab 3 in the model).
Electrification generally offers a c4x efficiency gain, jumping from c15-20% on conventional oil-powered vehicles to c60-80% on electric vehicles. Hybrids and hydrogen also yield modest efficiency improvements.
Most exciting is the set of emerging, electric transportation technologies, which are faster than incumbents, yet also achieve 4-120x efficiency gains per passenger mile (chart below).
The CO2 content of gas fields is going to matter increasingly, for future gas development decisions: CO2 must be lowered to 50ppm before gas can be liquefied, adding cost. Moreover, it is no longer acceptable to vent the separated CO2 into the atmosphere.
Large, low-CO2 resources like the Permian, Marcellus and Mozambique are well-positioned to dominate future LNG growth.
This data-file tabulates 30 major gas resources around the world, their volumes, their CO2 content and how the CO2 is handled.
Cookies?
This website uses cookies to improve your experience. You can opt-out if you wish.AcceptRejectRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.