Heliogen: concentrated solar breakthrough?

Heliogen has set a new record for concentrated solar power in November 2019, generating >1,000C temperatures from an array of c370 hexagonal mirrors, which are precisely controlled using computer vision. This is almost 2x traditional CSP plants which achieve c560C temperatures.

We have reviewed 21 patents from Heliogen’s predecessor company, eSolar, in order to understand its IP. Not only can it control heliostats more precisely than prior companies, but this allows the heliostats to be down-sized, conferring material cost-savings.

This data-file summarizes the technology, the patents, the costs (in c/kWh and $/mcfe) and the opportunity to decarbonise industrial heat and power generation.

Methane Leaks from Downstream Gas Distribution

This data-file tabulates the methane emissions from downstream gas distribution across 160 US gas networks, which cover 1.1M miles of mains, 61M metered customers and >90% of the country’s retail gas demand.

Downstream US methane leakages average 0.2% by volume, explaining 5.7kg/boe of emissions. Two thirds of these leaks can be attributed to gas mains. Leakages are correlated with the share of sales to smaller customers. And state-owned utilities appear to have 2x higher leakage rates the public companies.

US gas utilities’ performance is screened to assess c80 distinct companies, including: Altagas, Atmos, Centerpoint, CMS, Dominion, DTE, Duke, Edison, National Grid, PG&E, Sempra, Southern Co, Spire, UGI, WEC & Xcel.

Mitigating methane: what methods?

This data-file screens the methods available to monitor for methane emissions. Notes and metrics are tabulated for Method 21, Optical Gas Imaging, fixed sensors, ground labs, aircrafts, drones and satellites; including advances at the cutting edge of each method.

Emerging screening methods, such as drones and trucks are also scored, based on results from an excellent recent technical trial. The best drones can detect almost all methane leaks >90% faster than traditional methods.

Companies developing next-generation methane-monitoring technologies are screened, including 12 private companies in growth mode, 8 private companies advancing new technologies and 6 public companies.

US E&Ps turn to ESG?

Of the largest 15 shale E&Ps, the proportion with ESG slides in their quarterly presentations has exploded by 4.5x in the trailing twelve months, from 13% in 3Q18 to 60% in 3Q19.

The progress is tracked in this short data-file, which counts the number of ESG slides published, by company, by quarter; as the industry articulates its carbon credentials in order to help attract capital.

Gas Gathering: how much CO2 and Methane?

Gas gathering and gas processing are 50% less CO2 intensive than oil refining. Nevertheless, these processes emitted 18kg of CO2e per boe in 2018, hence the gas industry must strive to improve.

Methane matters most, explaining 7kg/boe of the gas industry’s CO2-equivalents, via leaks and fugitive emissions (and this is with 1 kg of methane translated into 25 kg of CO2e). Hence US methane intensity ran at c0.5% in 2018.

The numbers vary widely by geography and by operator, and are quantified in this data-file, after analysing 850 facilities’ EPA disclosures. Very detailed and comparable disclosures are broken out for US gas gathering, to screen for leaders and laggards.

Covered companies include Antero, BP, Denbury, DCP, DTE, Equinor, Equitrans, Energy Transfer Partners, Enlink, Enterprise Product Partners, EOG, ExxonMobil, Kinder Morgan, Oneok, Pioneer, Shell, Targa, Williams.

US Refiners: CO2 cost curve?

Which refiners are least CO2 intensive, and which refiners are most CO2 intensive? This spreadsheet answers the question, by aggregating data from 130 US refineries, based on EPA regulatory disclosures.

The full database contains a granular breakdown, facility-by-facility, showing each refinery, its owner, its capacity, throughput, utilisation rate and CO2 emissions across six categories: combustion, refining, hydrogen, CoGen, methane emissions and NOx (chart below).

Assessed companies include Aramco, BP, Chevron, Citgo, Delek, ExxonMobil, Koch, Hollyfrontier, Marathon, Phillips66, PBF, Shell and Valero.

Power from Shore: the economics?

We model the economics of powering an oil platform from shore, using cheap renewable power instead of traditional gas turbines. This can lower upstream CO2 emissions by 5-15kg/bbl, or on average, around 70%; for a base case cost of $50-100/ton.

Our numbers are derived from reviewing technical papers, plus ten prior projects (mostly in Norway), which are tabulated in the data-file, including capex figures (in $M and $/W) where disclosed.

The costs of CO2 abatement can be flexed by varying inputs to the model, such as project size, gas prices, power prices and carbon prices.


Carbon Credentials drive Capital Costs?

Lower carbon oil and gas may be increasingly valued by investors, earning higher multiples and lower costs of capital. This is the conclusion from our recent investor survey, linked here.

c80% now find it harder to invest in oil and gas, because of the need to decarbonise energy. However, 90% see lower carbon barrels as part of the solution. Hence 80% stated that lower capital costs could be warranted for these lower carbon producers.

Higher carbon barrels are currently being punished with c6% higher costs of capital, on average, compared with more typical projects. However, lower carbon barrels are not yet being rewarded, ascribed just 2% lower costs of capital, according to the survey data.

We will be happy to send a free copy of the data-file to all those that complete the survey, otherwise, it can be purchased below.

Permian CO2 Emissions by Producer

This data-file tabulates Permian CO2 intensity based on regulatory disclosures from 20 of the leading producers to the EPA in 2018. Hence we can  calculate the basin’s upstream emissions, in tons and in kg/boe.

The data are fully disaggregated by company, across the 20 largest Permian E&Ps, Majors and independents; and across 18 different categories, such as combustion, flaring, venting, pneumatics, storage tanks and methane leaks.

A positive is that CO2 intensity is -52% correlated with operator production volumes, which suggests CO2 intensity can be reduced over time, as the industry grows and consolidates into the hands of larger companies.

Portfolio Construction for Energy Majors?

This data-model calculates risk-adjusted returns available for different portfolio weightings in the energy sector, as companies diversify across upstream, downstream, chemicals, corporate, renewables and CCS investments. The methodology is a mean-variance optimisation based on modern portfolio theory.

Should Oil Majors become Renewable Energy Majors? Our model indicates returns would decrease by allocating more capital to renewables, but certain renewable allocations can nevertheless increase risk-adjusted returns, as quantified using Sharpe Ratios.

Please download the model to test the impacts of flexing portfolio weightings; either at our own risks, returns and diversification benefits; or under your own assumptions which can be tweaked in the model.