The Top Public Companies for an Energy Transition

This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.

Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.

Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.

The screen is updated monthly. At the latest update, in July-2020, it contains 167 differentiated views on 87 public companies.

The Top 30 Private Companies for an Energy Transition

This data-file presents the ‘top 30’ private companies out of several hundred that have crossed our screens since the inception of Thunder Said Energy, looking back across all of our research.

For each company, we have used apples-to-apples criteria to score  economics, technical readiness, technical edge, decarbonization credentials and our own depth of analysis.

The data-file also contains a short, two-line description follows for each company, plus links to our wider research, which will outline each opportunity in detail.

The Top Technologies in Energy

What are the top technologies to transform the global energy industry and the world? This data-file summarises where we have conducted differentiated analysis, across c80 technologies (and counting).

For each technology, we summarise the opportunity in two-lines. Then we score its economic impact, its technical maturity (TRL), and the depth of our work to-date. The output is a ranking of the top technologies, by category; and a “cost curve” for the total costs to decarbonise global energy.

Download this data-file and you will also receive updates for a year, as we add more technologies; and we will also be happy to dig into any technologies you would like to see added to the list.

Additive manufacturing: technology leaders?

This data-file tabulates 5,500 patents into additive manufacturing (AM, a.k.a., 3D printing), in order to identify technology leaders.  Patent filings over time show a sharp acceleration, making AM one of the fastest growth areas for the energy transition.

14 companies with concentrated exposure to the theme are profiled, including their size, revenues, share of revenues from AM and 3-6 lines of notes on each company.

The full screen also shows growing AM activity from Cap Goods, aerospace, automotive and oil services companies.

Use of thermoplastic materials is also seen by narrowing in upon 130 patents from leading chemicals companies (e.g., Covestro, Solvay, SABIC, Arkema).

Examples from the patents show how AM can reduce costs by 25-90% and lead times by 10-90%.


Net zero Oil Majors: four cardinal virtues?

Attaining ‘Net Zero’ can uplift an Energy Major’s valuation by c50%. Specifically, this means emitting no net CO2, either from the company’s operations (Scope 1&2 emissions) or from the use of its products (Scope 3). This 19-page report shows how a Major can best achieve ‘net zero’ by exhibiting four cardinal virtues. Decarbonization is not a threat but an opportunity.

CO2-Cured Concrete: Solidia vs traditional cement?

CO2-cured concrete has c60% lower emissions than traditional concrete, whichis the most widely used construction material on the planet, comprising 4bn tons of annual CO2 emissions, or 8% of the global total.

This data-file profiles Solidia’s industry-redefining product — CO2-cured cement — based on an impressive array of 38 patents. We model the production costs, CO2 costs and full-cycle economics; then size the addressable market and outline our notes and patent data.

A rapid scale-up is now underway.  We see realistic medium-term CO2 savings of 10MTpa in the US and 300MTpa globally.  A CO2 price would further enable cost-competitive pricing, even after earning a 10-20% pricing premium versus traditional concrete, yielding exceptional IRRs.

Leading Companies in Pipeline Gas Distribution?

This data-file tracks over 800 ex-China patents for the pipeline transportation of natural gas, filed from 2010 to 2019. The aim is to screen for exciting technologies and companies, as natural gas demand is set to treble in the most economic route to an energy transition.

Innovative growth companies with a focus on pipeline gas transport include 3 publicly listed firms and 6 venture-stage start-ups. They are commercialising next-generation materials, leak monitoring and remote metering solutions.

Larger and listed companies with recent innovations in gas distribution include Air Products, Kogas, Tokyo Gas, Shawcor and Ecolab.

Leading Companies in Battery Recycling?

This data-file tracks over 6,000 patents filed into battery recycling technology, focusing in on 1,800+ post-2010, Western-filed patents. This matters as annual battery disposal requirements will ramp up to over 250kTpa over the next decade.  Hence the pace of patent developement has been escalating at a 15% CAGR.

18 technology leaders are profiled ex-China, based on their patent filings and public disclosures. We tabulate the size, likely battery recycling revenues and recent commercial progress.

The leaders include 6 larger-cap listed companies (two in Japan, two in the US, one in Korea, one in Europe) and 10 private companies, including some exciting, early-stage concepts to improve material recovery and costs.

The final tabs of the file include all of the patents, with summaries, and our notes from recent technical papers.

Nature-based CO2 offsets: measuring forest and soil carbon?

This data-file screens twenty companies involved in measuring and verifying nature-based carbon offsets, in forests and soils. It includes 6 leading companies at the cutting edge (5 private, and 1 subsidiary of a large, listed US corporation).

Traditional methodologies have evolved rapidly, from time-intensive and cumbersome manual methods, into a fully-fledged, technology-driven, real-time remote sensing industry. This is a pre-requisite for the scale-up of nature-based CO2 offsets.

The data-file contains an overview of each of the 20 companies, its size, recent progress and a subjective score of its edge and interest.  The file also contains our notes on measuring soil and forest CO2, plus c400 patents that informed the screen.

Biofuels: better to bury than burn?

The global bioethanol industry could be disrupted by a carbon price. Somewhere between $15-50/ton, it becomes more economical to bury the biofuel crop, rather than convert it into biofuels. This would remove 8x more CO2 per acre, at a lower total cost. More conventional oil could be decarbonized with offsets. Ethanol mills and blenders would be displaced. The numbers and implications are outlined in this 12-page report.