This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.
Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.
Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.
The screen is updated monthly. At the latest update, in October-2020, it contains 180 differentiated views on 90 public companies.
This data-file presents the ‘top 30’ private companies out of several hundred that have crossed our screens since the inception of Thunder Said Energy, looking back across all of our research.
For each company, we have used apples-to-apples criteria to score economics, technical readiness, technical edge, decarbonization credentials and our own depth of analysis.
The data-file also containsa short, two-line description follows for each company, plus links to our wider research, which will outline each opportunity in detail.
Which refiners are least CO2 intensive, and which refiners are most CO2 intensive? This spreadsheet answers the question, by aggregating data from 130 US refineries, based on EPA regulatory disclosures.
The full databasecontains a granular breakdown, facility-by-facility, showing each refinery, its owner, its capacity, throughput, utilisation rate and CO2 emissions across six categories: combustion, refining, hydrogen, CoGen, methane emissions and NOx (chart below).
This data-file tabulates the details of companiesin the methanol value chain. For incumbents, we have quantified market shares. For technology providers, we have simply tabulated the numbers of patents filed into methanol production since the year 2000. For new, lower-carbon methanol producers, we have compiled a screen, noting each company’s size, patent library and a short description (chart above).
Smart meters and smart devicesare capable of transmitting and receiving real-time data and instructions. They open up new ways of optimizing energy efficiency, peak demand, appliances and costs. Over 100M smart meters and thermostats had been installed in the United States (including at c90M residences) and 250M have been installed in Europe by 2020.
The purpose of this data-fileis to profile c30 companies commercializing opportunities in smart energy monitoring, smart metering and smart thermostats. The majority of the companies are privately owned, at the venture or growth stage. We also tabulate their patent filings.
We find most of the offeringswill lower end demand, assist with smoothing grid-volatility, provide appliance-by-appliance demand disaggregations and encourage consumers to upgrade inefficient or potentially even defective appliances. Numbers are tabulated in the data-file to quantify each of these effects.
Nature-based solutions are among the most effectiveways to abate CO2. Forest offsets will cost $2-50/ton, decarboning liquid fuels for <$0.5/gallon and natural gas for <$1/mcf (chart below).
The data-file tabulates hundreds of data-points from technical papers and industry reports on different tree and grass types. It covers their growing conditions, survival rates, lifespans, rates of CO2 absorption (per tree and per acre) and their water requirements (examples below).
This data-file tabulates the greatest challenges for lithium ion batteries in electric vehicles, which have been cited in 2020’s patent literature. Specifically, the work contains a sample of 100 patents aiming to overcome these challenges, as filed by companies including Tesla, CATL, GM, GS Yuasa, LG, Nissan, Panasonic, Sanyo, Sumitomo, Toyota, et al.
Our notes and conclusionsare spelled out in detail. We find the industry is clearly entering execution mode, and less focused on radical breakthroughs in energy density. CATL and Tesla’s pursuit of a “million mile battery” is substantiated, but includes trade-offs. The patent disclosures also suggest great difficulties in ever achieving a battery-powered semi-truck.
Phase change materials are an emerging materials class, which can store and release heat (or coldness) as they change beween solid and liquid phases. Our recent research finds they can improve the efficiency of cold storage by c20%, at attractive economics, which is superior to any other battery.
The aim of this data fileis to identify the technology leaders in phase change materials, by quantifying 21,000 patents filed into the topic, and compiling a list of 5,800 patents by over 125 companies in the space.
The leading patent filersare ranked in the Leaders tab, and can be filtered by sub-sectors (shown above are companies in the refrigeration and air conditioning industry). All the raw data across 5,800 patents follow in the final tab.
The aim of this data-fileis to assess who has the leading technology for producing industrial hydrogen: but especially blue hydrogen from auto-thermal reformers, which was highlighted as an opportunity in our recent research note.
Our screen assesses the leading companies making reformers to produce industrial hydrogen, based on public disclosures, 750 patents, and classifying these patents into their consituent patent families.
Profiled companiesinclude Air Liquide, Air Products, Casale, Haldor Topsoe, Johnson Matthey, KBR, Linde, Thyssenkrupp and over a dozen large, diversified energy companies.
This database tabulates almost 300 venture investmentsmade by 9 of the leading Oil Majors, as the energy industry advances and transitions.
The largest portionof activity is now aimed at incubating New Energy technologies (c50% of the investments), as might be expected. Conversely, when we first created the data-file, in early-2019, the lion’s share of historical investments were in upstream technologies (c40% of the total). The investments are also highly digital (c40% of the total).
Four Oil Majors are incubating capabilitiesin new energies, as the energy system evolves. We are impressed by the opportunities they have accessed. Venturing is likely the right model to create most value in this fast-evolving space.
The full databaseshows which topic areas are most actively targeted by the Majors’ venturing, broken down across 25 sub-categories, including by company. We also chart which companies have gained stakes in the most interesting start-ups.
Cookies?
This website uses cookies to improve your experience. You can opt-out if you wish.AcceptRejectRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.