ESP Optimisation Opportunities?

This data-file calculates the financial and carbon costs of running electric submersible pumps (ESPs) at oilfields, as a function of half-a-dozen input variables. This matters with ESPs fitted on 15-20% of the world’s c1M oil wells.

Opportunities to optimise: CO2 intensities can be lowered 25% by switching diesel-powered ESPs to natural gas, and theoretically by 100% by switching to renewables. Associated kg/boe and cost savings are tabulated in the data-file.

Leading Majors and new technology companies are also pioneering means to improve ESP efficiency. We tabulate our top examples in the data-file. Initiatives from Aramco and Equinor screen as most impressive.

Drones & droids: deliver us from e-commerce

Small, autonomous, electric vehicles are emerging. They are game-changers: rapidly delivering online purchases to customers, creating vast new economic possibilities, but also driving the energy transition. Their ascent could eliminate 500MTpa of CO2, 3.5Mboed of fossil fuels and c$3trn pa of consumer spending across the OECD. The mechanism is a re-shaping of urban consumption habits, retail and manufacturing.

Drone Delivery: the Energy Economics

This data-file quantifies the energy economics of drone-deliveries, after Amazon and Google both announced breakthrough progress in this space in 2019.

15 commercial drones are evaluated in the ‘drones’ tab, which tabulates their energy consumption as a function of weight, velocity, flight times and costs (chart above).

The equations of flight are then modeled out fully for Amazon’s Prime Air concept in the ‘AmazonCalculation’ tab; for a full comparison against trucks.

We conclude that drone delivery could use c90% less energy, c99% less cost and c90% lower carbon than is typical in current last-mile deliveries.

Subsea Robots: the next generation?

This data-file tabulates over 20 next-generation subsea robots, being pioneered around the industry. Each one is described and categorized, including by technical readiness.

These electric solutions could be very material for offshore economics, improving oilfield decline rates and maintenance costs. Innovations include:

  • Residing subsea for c1-year at a time, by re-charging in subsea “docking” stations. This provides greater availability for lower cost.
  • Increasing autonomy means these robots can be free-swimming, as a communications tether is no longer necessary, improving ranges.
  • More intervention work will be conducted, rather than just inspections.

8 of the concepts in our database have all three of these capabilities above. They are at TRLs 5-6, and should be commercially ready in the early 2020s.

The leading companies are tabulated in the data-file, by Major and Service firm (chart below).

These solutions can save c$0.5-1/boe for a typical offshore oilfield, we estimate: performing inspection tasks 2-6x faster than incumbents, as well as halving costs and eliminating the weather-dependency associated with launching-recovering traditional ROVs.  For full details, please download the data-file.

 

Patent Leaders in Energy

Technology leadership is crucial in energy. But it is difficult to discern. Hence, we reviewed 3,000 patents across the 25 largest companies. This note ranks the industry’s “Top 10 technology-leaders”: in upstream, offshore, deep-water, shale, LNG, gas-marketing, downstream, chemicals, digital and renewables. In each case, we profile the leading company, its edge and the proximity of the competition.

The cutting edge of shale technology?

The database evaluates 950 technical papers that have been presented at shale industry conferences from 2018-2020.  We have summarised each paper, categorized it by topic, by author, by basin, ‘how digital’ and ‘how economically impactful’ it is.

The aim is to provide an overview of shale R&D, including the cutting edge to improve future resource productivity. We estimate 2020 was the most productivity-enhancing set of technical papers of any year in the database.

Recent areas of innovation include completion design, fracturing fluids, EORand machine learning. We also break down the technical papers, company-by-company, to see which operators and service firms have an edge (chart below).

Well-by-well optimisation?

Production optimisation can uplift mature fields’ output by 5-20%, varying production rates, chokes, pump-rates and EOR strategies, well-by-well across a field.  It’s another way to stave off decline rates. But how?

This data-file summarises the methodology employed by BP, based on the most detailed patent we have seen on the topic, in our screen of 3,000 patents across the industry. BP is a leader in this area. Having digitised most of its operated assets, production optimisation comes next.

The typical challenge across the industry, is that as many as 20-30 changes may be required to optimise a large field, which is time-intensive for engineers to perform manually, hard-to-prioritise, hard-to-sequence and prone to errors that might defy operational constraints on individual wells.

BP’s system iterates through potential changes, selects the most promising candidates, validates that they comply with operating constraints, and shifts production to an optimal state (chart above).

This data-file includes our summary of BP’s patent, schematics for its implementation, data behind our chart above and a ranking of BP’s  “digital technology” versus other Majors that we have assessed.

 

Can super-computers lower decline rates?

Advanced reservoir modelling can stave off production declines at complex offshore assets. This data-file illustrates how, tabulating production estimates based on a technical paper published by Eni, an industry leader in applying high-speed computing power in its upstream operations.

Specifically, the paper simulates an offshore field-cluster in a single, Integrated Asset Model that covers 31 wells, drilled into 3 reservoirs (each is modelled in detail, with a total of 1.9M reservoir cells), 34 pipes, 4 oil platforms and 3 delivery points. Each iteration of this model takes an average of 3.5-hours to run.

Production can be uplifted by 60% according to the simulation, both in terms of EUR and in terms of year 5-7 production rate. 9pp of the uplift is achieved by simple reservoir optimisation. Another 21pp of uplift is achieved by identifying the key bottleneck, and building a new separation & boosting platform to alleviate it. A further 29pp of uplift comes from optimising the development plan for the new platform.

Emerging digital technologies appear to be keeping LT oil-markets better supplied than many expect, with production upside for the industry’s technology-leaders.

Johan Sverdrup: Don’t Decline

Equinor is deploying three world-class technologies to mitigate Johan Sverdrup’s decline rates, based on reviewing c115 of the company’s patents and dozens of technical papers. This 15-page note outlines how its efforts may unlock an incremental $3-5bn of value from the field, as production surprises to the upside.

Deploying the Digital Twin

This data-file tabulates 36 recent technical papers into “digital twins”, in order to understand how the technology is being deployed around the upstream oil and gas industry.

The data show the most common uses of digital twins, the most common context, the timing of the technology’s ascent and the companies who feature most prevalently in the technical literature.

Copyright: Thunder Said Energy, 2022.