Gas industry CO2 per barrel?

We have constructed a simple model to estimate the CO2 emissions of commercialising a gas resource, as a function of eight input variables: such as production techniques, methane leakage, sour gas processing, LNG liquefaction, LNG tanker distances and pipeline distances.

Energy return on energy invested is c20x across piped gas resources and c10x across LNG resources, compared with c7-10x for oil. This supports the rationale for oil-to-gas switching, as commercialising gas will likely emit 0-80% lower CO2 per boe; plus 15-20% lower combustion emissions.

Different resources are compared using our methodology. The lowest CO2 profile is seen for well-managed piped gas (e.g., Norway to Europe). Actual data on US LNG facilities and methane intensities have been added.

Download the model and you can quickly compute approximate CO2 emissions for other resources.

Long-Term LNG Demand: technology-led?

This is a simple model of long-term LNG demand, extrapolating out sensible estimates in the world’s leading LNG-consuming regions. On top of this, we overlay the upside from two nascent technology areas, which could add 200MTpa of potential upside to the market. Backup workings are included.

Long-Term LNG Supply: Path-Dependent?

Our LNG supply model looks project-by-project, across 115 LNG facilites: including c40 mature plants, c15 under development, c20 in design and c30 under discussion.

Our base case supply estimates come from “risking” the supply associated with each of these projects (chart below).

The outlook depends on the path. The 2030 supply outlook can vary by 250MTpa, when comparing all reasonably possible supply (top chart) against the firm supply-growth that looks all but locked (bottom chart).

The greatest opportunities in LNG are therefore to create new demand and to advance competitive projects when others are cannot. To see which projects we think will progress, please download the data-file.

 

US Shale Gas to Liquids?

We have reviewed 42 of Shell’s GTL patent filings for 2018. They show continued progress, innovating new fuels, lubricants, renewable-heavy gasolines, waxes and detergents. Each patent is summarised and categorized in this data-file.

All of this begs the question whether there is a commercial rationale for a US replica of the Pearl GTL project, to handle the over-abundance of gas emanating from the Permian; and produce these advantaged products. It would also help reduce the risk of US LNG projects glutting the market.

We therefore model the economics in this data-file, using prior project disclosures and our learnings from the patent history. Our base case IRR is 15%, taking in 1.6bcfd of shale gas. Resiliency is tested by varying oil and gas prices.

Pre-Salt Brazil: FPSO Tracker

This data-file tracks the construction progress of 30 FPSOs that are being deployed in the Brazilian pre-salt oil province. In each case, we quantify the vessel’s oil and gas handling capacity, development timing and recent news.

We also compare the FPSOs’ gas-handling capacity with regional pipeline capacity. There will only be room to monetize one-third of the pre-salt’s produced gas volumes by the mid-2020s. The rest  must be re-injected (chart below).

 

Major technologies to decarbonise power?

Leading Oil Majors will play a crucial role in decarbonising the energy system. Their initiatives should therefore be encouraged by policy-makers and ESG investors, particularly where new energy technologies are being developed, which will unlock further economic opportunities to accelerate the transition.

In order to help identify the leading companies, this-data file summarises c90 patents for de-carbonising power-generation. It is drawn from our database of over 3,000 distinct patents filed by the largest energy companies in 2018. These technologies will secure the role of fossil fuels, particularly natural gas, in a decarbonising energy system.

De-carbonising carbon?

Decarbonisation is often taken to mean the end of fossil fuels. But it could become more feasible simply to de-carbonise fossil fuels. This 19-page note explores two top opportunities: next-generation combustion technologies, which can meet the world’s energy needs relatively seamlessly, with zero carbon and little incremental cost. They are ‘Oxy-Combustion’ using the Allam Cycle and Chemical Looping Combustion. Leading Oil Majors support these solutions to create value advancing the energy transition.

Alternative truck fuels: how economic?

This data-file compares different trucking fuels — diesel, CNG, LNG, LPG and Hydrogen — across 35 variables. Most important are the economics, which are fully modelled.

Natural Gas can be close to competitive. On an energy-equivalent basis, $3/mcf gas is 4x more economical than $3/gal diesel. However, the advantages are offset by higher vehicle costs, operational costs and logistical costs. Overall, CNG ends up 10% more expensive, and LNG ends up 30% more expensive versus diesel-trucking. Mild environmental positives of gas are also offset by mild operational challenges.

Hydrogen still screens as an expensive alternative. We estimate vehicle costs are 2x higher than diesel trucks, while $15/kg hydrogen is 4x more expensive than diesel as a fuel.

Greenfield LNG: Does Exxon have an edge?

For large-scale capital projects in a commodity industry, harnessing better technologies tends to unlock better returns.

Hence this 7-page note evaluates ExxonMobil’s technology for constructing greenfield LNG plants, particularly in remote geographies. Its technical leadership stands out from our analysis of 3,000 patents across the industry. This matters as Exxon progresses new LNG investments in Mozambique, PNG and the US.

ExxonMobil has leading LNG technology for extra-large trains using the APX process, modular LNG units that minimise on-site construction costs, pressure-swing absorption to remove gas-contaminants and efficient gas turbines.

Opportunities should arise for investors in Exxon’s LNG projects, and for its partners, resource-owners and other stakeholders, to ensure that value is maximised.

Oxy-combustion: economics of zero-carbon gas?

Oxy-combustion is a next-generation power technology, burning fossil fuels in an inert atmosphere of CO2 and oxygen. It is easy to sequester CO2 from its exhaust gases, helping heat and power to decarbonise. We argue that IRRs can compete with conventional gas-fired power plants.

This is our model of the economics. It is constructed from technical disclosures. For example, Occidental petroleum and McDermott have already invested in one of the technology-leaders, NET Power, which constructed a demonstration plant in LaPorte Texas, starting up in 2018.