How do LNG costs vary with plant size?

This data-file tabulates a dozen data-points on LNG plant opex, from company disclosures, the technical literature and academic papers. Opex is a function of plant size, and tends to fall by $0.3/mcf for each 10x change in plant capacity.

Wind: aim higher?

This data-file contains a simple model for how wind speeds and wind power co-vary with altitude. 2x greater power could likely be harnessed by a kite at 300m than a similar-sized turbine at 80m.

Costs of an LNG fuelling station

We have tabulated the costs of constructing an LNG-fuelling station for road vehicles across 55 distinct cost-lines, based on data from a dozen sites in Europe. Total capex will average €1M/site. Effectively, this is a $250/tpa re-gasification plant. Overall, we estimate distributing LNG to road-consumers will add $10/mcf to the costs of gas-fuel. Around 30% of the capex costs are specifically linked to LNG, and could be slim-lined for a CNG-only fuelling station.

Maintenance costs for gas-powered trucks?

This data-file tabulates the maintenance costs incurred by a fleet of 42x CNG-powered trucks, over 16M miles in the United States. Maintenance costs averaged 8c/mile, of which 1.6c/mile (i.e., 20%) was specifically attributed to running on CNG. Specifically, gas spark plugs must be replaced every 60,000 miles, niche maintenance operations are more expensive and in one instance, the truck engines were damaged by ‘wet fuel’.

How could plastic-recycling technology impact oil demand?

We see potential for plastic-recycling technologies to displace 15Mbpd of potential oil demand growth (i.e., naphtha, LPGs and ethane) by 2060, compared to a business-as-usual scenario of demand growth. In a more extreme case, oil demand for conventional plastics could halve. This simple model allows you to vary the input assumptions and derive your own outputs.

Plastic landfill costs by country

This data-file tabulates the most likely costs of placing waste-material (e.g., plastic) into landfill, by country. The landfill taxes are a strong incentive for plastic recycling technologies. For example, a c$65/ton gate fee improves the IRRs or plastic pyrolysis by c15pp, all else equal.

Global plastics: an overview?

A breakdown of the global plastics industry, from several recent academic papers. This data-file shows the rise of global plastic use since 1950, recent plastic use by end-product, recent plastic use by end-plastic (e.g., polyethylene, polypropylene, polyamides, PET, PVC), and plastics’ fate after their use. This includes the proportion of plastics that are improperly disposed of, including those that reach the sea, estimated by country. (Not all data are current, and some charts stop at 2015-16).

Oil demand for chemicals, by product, by region

This data-file breaks down the world’s use of oil to make chemicals (i.e., plastics). It’s split across 13 different products, and the ‘Top 10’ countries/regions. The estimate year is 2016.

Global shipping and the switch from fuel oil?

The 240MTpa shipping-fuels market will be disrupted from 2020, under IMO sulphur regulations. Hence, this data-file breaks down the world’s 100,000-vessel shipping fleet into 13 distinct categories. Fuel consumption is estimated for each category. Distributions of weight and LNG fuel-equivalence are split for the four largest categories. We see 40-60MTpa upside to LNG demand from 2040, led by cruise-ships and large container-ships.

The data-file also includes helpful background on the marine fuels industry and consensus forecasts for LNG demand growth within it (below).

Production Losses at a Giant Offshore Oilfield

This data-file breaks down the production losses at a giant offshore oilfield, across five categories and ten sub-categories. They are addressable with digital oilfield technologies, as shown by our notes. Advanced algorithms such as BP’s Apex solution, are capable of reducing the losses — particularly in the largest categories. Halving them could increase output by c55kbpd.