This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.
Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.
Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.
The screen is updated monthly. At the latest update, in February-2021, it contains 200 differentiated views on 100 public companies.
This model contains our live, basin-by-basin shale forecasts. It covers the Permian, Bakken and Eagle Ford, as a function of the rig count, drilling productivity, completion rates, well productivity and type curves. Thus, we derive production and financial expectations.
For 2021, we model the impacts of last year’s COVID crash. We see shale declining by 2Mbpd from March 2020 to December 2021. It takes until Jan-2023 to recover to the prior peak. In 2022, shale production will run almost 7Mbpd below its pre-COVID potential.
Our longer-term numbers hinge on the productivity gainsdescribed in our thematic research. Shale productivity trebled from 2012-2018. We think it can rise another 45% by 2025, unlocking 16Mbpd of liquid shale production. However beforehand, productivity will disappoint as the industry ramps activity levels back post-COVID.
This database tabulates almost 300 venture investmentsmade by 9 of the leading Oil Majors, as the energy industry advances and transitions.
The largest portionof activity is now aimed at incubating New Energy technologies (c50% of the investments), as might be expected. Conversely, when we first created the data-file, in early-2019, the lion’s share of historical investments were in upstream technologies (c40% of the total). The investments are also highly digital (c40% of the total).
Four Oil Majors are incubating capabilitiesin new energies, as the energy system evolves. We are impressed by the opportunities they have accessed. Venturing is likely the right model to create most value in this fast-evolving space.
The full databaseshows which topic areas are most actively targeted by the Majors’ venturing, broken down across 25 sub-categories, including by company. We also chart which companies have gained stakes in the most interesting start-ups.
This data-file compares different trucking fuels— diesel, CNG, LNG, LPG and Hydrogen — across 35 variables. Most important are the economics, which are fully modelled, in the 2020s in the US, in the 2020s in Europe and incorporating deflation in the 2040s.
Hydrogen still screens as an expensive alternative. We estimate full cycle freight costs will be c30% higher for hydrogen vehicles than diesels in Europe, and as much as 2x higher in the US. The data-file contains a breakdown of hydrogen truck concepts and their operating parameters.
Natural Gas can be close to competitive. On an energy-equivalent basis, $3/mcf gas is 4x more economical than $3/gal diesel. However, the advantages are offset by higher vehicle costs, operational costs and logistical costs. Mild environmental positives of gas are also offset by mild operational challenges.
What are the top technologies to transform the global energy industry and the world? This data-file summarises where we have conducted differentiated analysis, across c90 technologies (and counting).
For each technology, we summarise the opportunity in two-lines. Then we score its economic impact, its technical maturity (TRL), and the depth of our work to-date. The output is a ranking of the top technologies, by category; and a “cost curve” for the total costs to decarbonise global energy.
Download this data-fileand you will also receive updates for a year, as we add more technologies; and we will also be happy to dig into any technologies you would like to see added to the list.
We have compiled a database of over 100 companies, which have already flown c40 aerial vehicles (aka “flying cars”) and the number should rise to c60 by 2021.
The datasubstantiates our conclusion that aerial vehicles will gain credibility in the 2020s, the way electric vehicles did in the 2010s. Our latest updated in early-2020 shows strong progress was made in 2019 (chart below).
The database categorizes the top vehicle conceptsby type, company, year-founded, company-size, company-geography, backers, fuel-type, speed, range, take-off weight, payload, year of first prototype, target commercial delivery date, fuel economy and required battery weights.
Some vehicle concepts are extremely impressive and credible; but a few may find it more challenging to meet the ranges they have promised at current battery densities…
This data-file assesses the outlook for 25 plastic pyrolysis companies, operating (or constructing) 100 plants around the world, which use chemical processes to turn waste plastics back into oil.
Our data-fileincludes the number of plants, locations, start-up years, input-types and capacities for each plant. We also include our own notes, our assessment’s of each company’s technology.
The data-file has been updated in 1Q20, revising our rankings, and adsding an assessment of 2019’s pace of newsflow. It is extremely encouraging to see Super-Majors entering the fray (Shell, TOTAL, BP), as well as strong progress from the leading companies.
The database evaluates 950 technical papers that have been presented at shale industry conferences from 2018-2020. We have summarised each paper, categorized it by topic, by author, by basin, ‘how digital’ and ‘how economically impactful’ it is.
The aim is to provide an overview of shale R&D, including the cutting edge to improve future resource productivity. We estimate 2020 was the most productivity-enhancing set of technical papers of any year in the database.
Recent areas of innovationinclude completion design, fracturing fluids, EORand machine learning. We also break down the technical papers, company-by-company, to see which operators and service firms have an edge (chart below).
This data-file tracks the Lula oilfield, well-by-well, FPSO-by-FPSO, aggregating data from over 100 production reports, which are published monthly by Brazil’s national hydrocarbon regulator.
Hence we have formulated “production forecasts” for each FPSO, and for the entire field; in 2H19 and in 1H20. This matters for oil markets; and for pre-salt producers, such as Petrobas, Shell and Galp.
Our outlook is for slowing growth, due to rising water- and gas-cuts, which are reviewed well-by-well. One FPSO is now definitively constrained by gas-handling capacity. Another is off-plateau due to maturity. Six Lula FPSOs are now negotiating water-cuts, as shown in the data-file.
1H19 production was lower than expected, at just 72% of total installed FPSO capacity. Our notes attribute the drivers, and contextualise the growth ahead.
This data-file contains all our data on the energy economics of e-scooters, a transformational technology for urban mobility, where demand has exploded in 2018 and 2019. And for good reason. The data-file includes:
Our projections of the oil demand destroyed by scooters
Our projections of the electricity demand created by scooters
Number of US travel-trips using shared bikes and scooters from 2010-18
Scooter costs versus car and taxi costs per mile
Average ranges and battery sizes of incumbent scooter models
Relative energy economics of scooters versus gasoline cars and EVs
Relative time taken to charge scooters versus EVs using solar panels
The proportion of scooter trips that replace gasoline car trips in eight cities
Profiles of the top 4 e-scooter companies
A timeline of shared mobility from 1965 to 2018.
The download will also enable you to adjust the input assumptions, to test different scenarios.
Cookies?
This website uses cookies to improve your experience. You can opt-out if you wish.AcceptRejectRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.