Terrestrial Energy: small modular reactor breakthrough?

Terrestrial Energy technology review

Our Terrestrial Energy technology review focuses on a next-generation nuclear fission company, founded in 2013, based in Ontario, Canada, has c100 employees and is aiming to build a small modular reactor, more specifically, an Integral Molten Salt Reactor.

Game-changer? A plant with 2 x 442MWth and 2 x 195MWe reactors might use 7 hectares of land, get constructed within 4-years, and for less than $1bn per reactor (long-term target is $2,600/kWe), yielding levelized costs of 5c/kWh (company target, we get to 5-7c/kWh for a 5-10% equity IRR in our own models), a CO2 intensity below 0.005 kg/kWh and multiple ways to back-up renewables.

Our patent review shows one of the strongest patent libraries to cross our screens from a pre-revenue company. 80 patents, filed in 25 geographies, lock up 8 core innovations, and give a clear picture for how the reactor achieves high efficiency, high safety and low complexity.

To read more about our Terrestrial Energy technology review. please see our article here.

Commonwealth Fusion: nuclear fusion breakthrough?

Commonwealth Fusion Systems spun out of MIT in 2018. The company is based in Massachusetts, has 165 employees and made headlines in November-2021 as it raised $1.8bn in Series B funding, which we think is the largest capital raise of any private fusion company to-date.

CFS aims to be the “fastest and lowest cost path to commercial fusion energy” by creating a commercial nuclear fusion reactor, the SPARC tokamak, which could be around 98% smaller than ITER. A single test magnet using 267km of its HTS tape sustained 20 Tesla magnetic fields in 2021.

Our patent review found CFS to have a high-quality patent library, of specific, intelligible, practical and commercially-minded innovations to densify the magnets that would confine plasma in a Tokamak. Specific details, and minor hesitations are in the data-file.

NuScale: small modular reactor breakthrough?

NuScale was founded in 2007 and is developing a small modular nuclear reactor (SMR), measuring 2.7m wide x 20m tall, weighting 700T and producing 250MWth of heat, for 77MWe of power.

Recent progress is strong. It is the first SMR design to win US regulatory approval, unlocking the first plants in 2029-30. In November-2021, plans were also announced to build SMRs in Romania, by 2028, displacing coal power.

NuScale’s patents scored well on our framework, with multiple, clear innovations to improve the safety, compactness and cost-effectiveness of SMRs. This could enable nuclear plants to be constructed for costs below $3,000/kW. Details that impressed us are in the data-file.

Uranium mining: the economics?

This simple model aims to disaggregate the marginal costs of a new uranium mine, as a function of uranium prices, ore grade, capex and opex. Our base case is a marginal cost of $60/lb for a 10% IRR. However, lower ore grades can easily require $90/lb uranium prices in order to justify investment. Cash costs range from $7-40/lb.

Uranium mining: company screen and market outlook?

We have screened c20 uranium miners, assessing each company’s production, reserves, asset base, size and recent news flow. 10 of the companies are publicly listed, while the remainder are private or state-owned.

Our market outlook is that firm uranium supply may be running 25% short of the level required on our roadmap to net zero.

Headline supply-demand forecasts are also presented in the data-file, along with notes and CO2 intensity calculations for the sector.

Copyright: Thunder Said Energy, 2022.