Decarbonise Downstream?

Refining has the highest carbon footprint in global energy. Next-generation catalysts are the best opportunity for improvement: uniquely, they could cut refineries’ CO2 by 15-30%, while also uplifting margins, which get obliterated by other decarbonisation approaches. Catalyst science is undergoing a digitally driven transformation. Hence this 25-page note outlines a new ESG opportunity around refining catalyst technologies. Industry leaders are also identified.


Pages 2-3 outline the need to decarbonise the refining industry, in order to clean up the world’s future oil production and preserve access to capital.

Pages 4-6 decompose the sources of CO2 emissions across a typical refinery, process-by-process; as a function of heat, utilities and hydrogen.

Page 7-8 outline small opportunities to improve refinery CO2 intensities, via continued process enhancements, changing crude slates and renewable energy.

Page 9 finds green hydrogen can reduce CO2 emissions by c7-15%, but economics are unfavorable, obliterating refining margins.

Pages 10-12 models the costs of post-combustion carbon capture, which could cut CO2 intensities by 25-90%, but also risks cutting margins by $2-4/bbl.

Pages 13-14 present the opportunity for better catalysts, identifying which Energy Majors have the leading refining technologies, based on patent filings.

Pages 15-17 outline the most promising, emerging catalyst technologies from 50 patents we studied. They can reduce refinery CO2 intensities by 5kg/bbl.

Pages 18-21 highlight breakthrough, digital technologies to improve the development of new catalysts, including super-computing and machine learning techniques.

Pages 23-24 screen 35 leading catalyst companies, including Super-Majors, chemicals companies and earlier-stage pure-plays.

Guyana: carbon credentials & capital costs?

Prioritising low carbon barrels will matter increasingly to investors, as they can reduce total oil industry CO2 by 25%. Hence, these barrels should attract lower WACCs, whereas fears over the energy transition are elevating hurdle rates elsewhere and denting valuations. In Guyana’s case, the upshot could add $8-15bn of NAV, with a total CO2 intensity that could be c50% below the industry average.


Pages 2-3 introduce our framework for decarbonisation of the global energy system. Within oil, this requires prioritising lower carbon over higher carbon oil barrels.

Pages 3-6 outline the economic value in Guyana, which is now at the point where it is hard to move the needle with further resource discoveries.

Pages 7-8 show how lower WACCs can be trasnformative to resource value, even more material than increasing oil prices to $100/bbl.

Pages 9-17 outline the top technologies that should minimise Guyana’s CO2 emissions per barrel, including flaring policies, refining quality, midstream proximity, proprietary gas turbine technologies from ExxonMobil’s patents and leading digital technologies around the industry.

Our conclusion is that leading companies must deepen their efforts to minimise CO2 intensities and articulate these initiatives to the market.

Patent Leaders in Energy

Technology leadership is crucial in energy. It drives costs, returns and future resiliency. Hence, we have reviewed 3,000 recent patent filings, across the 25 largest energy companies, in order to quantify our “Top Ten” patent leaders in energy.


This 34-page note ranks the industry’s “Top 10 technology-leaders”: in upstream, offshore, deep-water, shale, LNG, gas-marketing, downstream, chemicals, digital and renewables.

For each topic, we profile the leading company, its edge and the proximity of the competition.

Companies covered by the analysis include Aramco, BP, Chevron, Conoco, Devon, Eni, EOG, Equinor, ExxonMobil, Occidental, Petrobras, Repsol, Shell, Suncor and TOTAL.


More information? Please do not hesitate to contact us, if you would like more information about accessing this document, or taking out a TSE subscription.

US Shale: No Country for Old Completion Designs

2019 has evoked resource fears in the shale industry. They are unfounded. Even as headline productivity weakened, underlying productivity continues improving at an exciting pace. These conclusions are substantiated by reviewing 350 technical papers, published by the shale industry in summer-2019. Major improvements are gathering momentum, in shale-EOR, machine learning techniques, digitalization and frac fluid chemistry.


Discussed companies include Apache, BP, Conoco, Chevron, Devon, ExxonMobil, Halliburton, Occidental, Pioneeer & Schlumberger.

Page 2 compares 2019’s shale performance to-date with our January forecasts, identifying that initial-month producutivity has been 20% weaker YoY.

Page 3-4 shows how continued productivity improvements matter, to unlock >20Mbpd of potential US shale output, plus $300bn of FCF by 2025 (at $50/bbl oil).

Pages 5-8 explain away the apparent degradation in resource productivity: it is a function of three alterations to completion designs.

Pages 9-12 outline 350 technical papers from the shale industry in summer-2019. They restore confidence: the industry is not facing systemic resource issues.

Page 12 covers 24 technical papers into “parent-child” issues. We were surprised by the number that were ‘negative’ versus the pragmatic solutions offered in others.

Page 13, 14 & 17 cover leading digitalization technologies: deployment of machine learning increased 5x YoY, while DAS/DTS increased 3x YoY in 2019.

Pages 14-16 cover the maturation of shale-EOR, which was the greatest YoY improvement, reaching 32 papers in 2019. The cutting-edge of EOR is exciting.

Page 18 outlines other technical highlights to drive future productivity higher.

Does Technology Drive Returns?

Technology drives 30-60% of energy companies’ return on capital. This is our conclusion after correlating 10 energy companies’ ROACEs against 3,000 patent filings. Above average technologies are necessary to generate above-average returns.


For the first time, we have been able to test the relationship between oil companies’ technical abilities and their Returns on Average Capital Employed (ROACE).

In the past, technical capabilities have been difficult to quantify, hence this crucial dimension has been overlooked by economic analysis in the energy sector.

Our new methodology stems from our database of 3,043 patents, filed by the Top 25 leading energy companies in 2018. The data cover upstream, downstream, chemicals and new energy technologies (chart below) . All the patents are further summarised, “scored” and classed across 40 sub-categories.

The methodology is to correlate our patent-scores for each company with the ROACE generated by the company in 2018. We ran these correlations at both the corporate level and the segment level…

Results: patent filings predict returns

Patent filings predict corporate returns. In 2018, the average of the Top 10 Integrated Oil Majors generated a Return on Average Capital Employed (ROACE) of 11%, based on our adjusted, apples-to-apples calculation methodology. These returns are 54% correlated with the number of patents filed by each Major (chart below).

Technology leaders are implied to earn c5% higher corporate returns than those deploying industry-average technologies, which is a factor of 2x.

Upstream patent filings also predict upstream returns, with an 85% correlation coefficient. The data are skewed by one Middle East NOC, which earns exceptionally high returns on capital, but even excluding this datapoint, the correlation coefficient is 65% (chart below).

The curve is relatively flat, with the exception of two outliers, implying that it is hardest to improve general upstream returns using technology. This may be because upstream portfolios are vast, spanning many different asset-types and geographies.

Downstream patent filings predict downstream returns, with an 80% correlation coefficient (chart below). However, our sample size is smaller, as we were unable to dis-aggregate downstream ROACE for all the Majors.

The curve is very steep, indicating that downstream technology leaders can surpass c20% returns on capital, versus c10% using industry-standard technologies.

Chemical patent filings predict chemical returns, with a 57% correlation coefficient (chart below). Again, our sample size is smaller, as we could only estimate chemicals ROACEs for some of the Majors.

The curve is also steep, with technology leaders earning c10-20% returns, versus low single digit returns for less differentiated players.

Overall, the results should matter for investors in the energy sector, for capital allocation within corporates, and for weighing up the benefits of in-house R&D. We would be delighted to discuss the underlying data with you in more detail.

De-Carbonising Carbon?

Decarbonisation is often taken to mean the end of fossil fuels. But it is more feasible simply to de-carbonise them, with next-generation combustion technologies.

This 19-page note presents our top two opportunities: ‘Oxy-Combustion’ using the Allam Cycle and Chemical Looping Combustion. Both can provided competitive energy with zero carbon coal & gas.

Leading Oil Majors are supporting these solutions, to create value while advancing the energy transition.


Carbon capture remains an “orphan technology”, absorbing just c0.1% of global CO2. The costs and challenges of current technologies are profiled on pp2-4.

Energy penalties are particularly problematic. Paradoxically, the more CCS in our models, the longer it takes to de-carbonise the energy system (see pp5-6).

Next generation combustion-technologies are therefore necessary…

Allam Cycle Oxy-Combustion burns CO2 in an inert atmosphere of CO2 and oxygen. We evaluate a demonstration plant and model strong economics (see pp12-15).

Chemical Looping Combustion burns fossil fuels in a fluidized bed of metal oxide. We profile the technology’s development to-date, net efficiency and levellised costs, which are passable (pp8-11).

Oil Majors are driving the energy transition. We count ninety patents from leading companies to process CO2, including 30 to de-carbonise power. The best advances are profiled from TOTAL, Occidental, Aramco and ExxonMobil. (See pp16-19).

Greenfield LNG: Does Exxon have an edge?

Harnessing better technologies tends to unlock better returns, for large-scale capital projects in a commodity industry.

Hence this 7-page note evaluates ExxonMobil’s technologies for constructing greenfield LNG plants, particularly in remote geographies. Its technical leadership stands out from our analysis of 3,000 patents across the industry. This matters as Exxon progresses new LNG investments in Mozambique, PNG and the US.

Opportunities should arise for investors in Exxon’s LNG projects, and for its partners, resource-owners and other stakeholders to maximise value.

Oil Companies Drive the Energy Transition?

There is only one way to decarbonise the energy system: leading companies must find economic opportunities in better technologies. No other route can source sufficient capital to re-shape such a vast industry that spends c$2trn per annum. We outline seven game-changing opportunities. Leading energy Majors are already pursuing them in their portfolios, patents and venturing. Others must follow suit.


Pages 2-3 show that today’s technologies are not sufficient to decarbonise the global energy system, which will surpass 100,000TWH pa by 2050. Better technologies are needed.

Pages 4-6 show how Oil Majors are starting to accelerate the transition, by developing these game-changing technologies. The work draws on analysis of 3,000 patents, 200 venture investments and other portfolio tilts.

Pages 7-13 profile seven game-changing themes, which can deliver both the energy transition and vast economic opportunities in the evolving energy system. These prospects cover electric mobility, gas, digital, plastics, wind, solar and CCS. In each case, we find leading Oil companies among the front-runners.

Shale EOR: Container Class

Will Shale-EOR add another leg of unconventional upside? The topic jumped into the ‘Top 10’ most researched shale themes last year, hence we have reviewed the opportunity in depth. Stranded in-basin gas will improve the economics to c20% IRRs (at $50 oil). Production per well can rise by 1.5-2x. The theme could add 2.5Mbpd to 2025 output.


Pages 3-5 review the theory of shale EOR. Its recovery factors could in principle surpass conventional EOR.

Pages 6-7 review lab results and field trials. They have been promising, suggesting >1.5-2x production uplifts should be attainable.

Pages 8-10 review the economics in detail. Our full model is informed by technical papers, and can be downloaded here.

Page 11 tabulates key statistics for using CO2 as a huff-n-puff injectant, the economic opportunities for carbon capture, but also the challenges.

Pages 12-13 attempt to quantify the production upside from shale EOR, by adapting our basin models.

Pages 14-15 cover the remaining challenges, including E&P patent-filing insights.

Page 16 lists a handful of companiesat the forefront of shale-EOR, including some earlier-stage start-ups.

IMO 2020. Fast Resolution or Slow Resolution?

The downstream industry is currently debating whether IMO 2020 sulphur regulations will be resolved quickly or slowly. We think the market-distortions may be prolonged by under-appreciated technology challenges.

Please log in to view this content

Opportunities amidst the Challenge?

So if the market-distortions of IMO 2020 have longevity, who will stand to benefit? We are maintaining a data-file of the ‘Top Technologies for IMO 2020’ around the industry, which give specific companies an edge. The data file now contains over 25 technologies across 7 Majors.


References

Al-Shahrani, F., Koseoglu, O. R. & Bourane, A. (2018). Integrated System and Process for In-Situ Organic Peroxide Production and Oxidative HeteroAtom Conversion. Saudi Aramco Patent.

Koseoglu, O. R., (2018). Integrated Isomerisation and Hydrotreating Process. Saudi Aramco Patent CN107529542

Hanks, P. (2018). Trim Alkali Metal Desulfurisation of Refinery Fractiions. ExxonMobil Patent US2018171238