Back-stopping renewables: the nuclear option?

Nuclear power can backstop much volatility in renewable-heavy grids, for costs of 15-25c/kWh. This is at least 70% less costly than large batteries or green hydrogen, but could see less wind and solar developed overall. This 13-page note reviews nuclear flexibility and sees nuclear growth accelerating.


Four types of volatility in renewable-heavy grids are described on page 2 and will require a back-up.

There are limitations for batteries in hydrogen, in smoothing this volatility, as discussed on pages 3-4.

What about nuclear? An improving economic rationale is noted on pages 5-6, prompting us to re-visit the possibility of flexible nuclear plant operation.

Technical issues for manoeuvring large nuclear power plants, scaling their output up and down, are laid out from first principles on pages 7-11, including minute-by-minute ramp-rates and the largest challenge, which is cold-starts.

The economics of nuclear flexibility are calculated on page 12, showing costs around 15-25c/kWh for a new Western greenfield facility, which is less than large batteries and hydrogen.

Our conclusions – and who benefits – are summarized on page 13.

Nuclear power: what role in the energy transition?

Uranium markets could be 50-75M lbs under-supplied by 2030. This deficit is deeper than other commodities in our roadmap to  net zero. Demand is driven by China, constructing reactors for 50-70% less than the West, yielding zero carbon power at 6-8c/kWh. This 18-page note presents the outlook for nuclear in the energy transition and screens uranium  miners.


An overview of the nuclear power industry is outlined on pages 2-5, in order to understand the market, its sub-components, and the energy-economics of nuclear power generation.

Capex costs have held back nuclear growth in the West, as heavy investments and devastating delays can kill IRRs and require 16c/kWh levellized costs (pages 6-7).

China is different, constructing new reactors for 50-70% less than the West, yielding passable economics at 6-8c/kwh, while generating clean baseload power (pages 8-9).

China drives our demand forecasts, underpinning 75% of future global demand on our ‘roadmap to net zero’, with stark upside as a diversification to under-supplied LNG markets, if China exports its technology and as new start-ups require inventory builds (pages 10-13).

Impacts on the uranium market are quantified on page 14. We are bridging to 50-75M lbs of under-supply by 2030, with risks skewed to the upside.

Uranium prices must re-inflate, from sub-$30/lb to $60-90/lb marginal costs (page 15).

Uranium miners are screened on pages 16-18, including profiles of ten public companies, from incumbents to early-stage developers. Rare Earth metals are a common by-product of uranium mining and also relevant to the energy transition.