Can carbon-neutral fuels re-shape the oil industry?

Fuel retailers have a game-changing opportunity seeding new forests, ourlined in our 26-page note. They could offset c15bn tons of CO2 per annum, enough to accommodate 85Mbpd of oil and 400TCF of annual gas use in a fully decarbonized energy system. The cost is competitive, well below c$50/ton. It is natural to sell carbon credits alongside fuels and earn a margin on both. Hence, we calculate 15-25% uplifts in the value of fuel retail stations, allaying fears over CO2, and benefitting as road fuel demand surges after COVID.

The advatages of forestry projects are articulated on pages 2-7, explaining why fuel-retailers may be best placed to commercialise genuine carbon credits.

Current costs of carbon credits are assessed on pages 8-10, adjusting for the drawback that some of these carbon credits are not “real” CO2-offsets.

The economics of future forest projects to capture CO2 are laid out on 11-14, including opportunities to deflate costs using new business models and digital technologies. We find c10% unlevered IRRs well below $50/ton CO2 costs.

What model should fuel-retailers use, to collect CO2 credits at the point of fuel-sale? We lay out three options on pages 15-18. Two uplift NPVs 15-25%. One could double or treble valuations, but requires more risk, and trust.

The ultimate scalability of forest projects is assessed on pages 19-25, calculating the total acreage, total CO2 absorption and total fossil fuels that can thus be preserved in the mix. Next-generation bioscience technologies provide upside.

A summary of different companies forest/retail initiatives so far is outlined on page 26.

Biofuels: better to bury than burn?

The global bioethanol industry could be disrupted by a carbon price. Between $15-50/ton, it becomes more economical to bury the biofuel crop, rather than convert it into biofuels. This would remove 8x more CO2 per acre, at a lower total cost. More conventional oil could be decarbonized with offsets. Ethanol mills and blenders would be displaced. The numbers and implications are outlined in this 12-page report.

Nature-based solutions to climate change need to double annual CO2 uptake from plants in our models of decarbonization, using forests and fast-growing grasses (pages 2-3).

We profile the bioethanol industry, which is already using fast-growing grasses to offset 2Mbpd of liquid fuels. But our models suggest the economics, efficiency and CO2 intensities are weak (pages 4-6).

A first alternative is to reforest the land used to grow biofuels, which would carbon-offset 1.5x more oil-equivalents than producing biofuels (pages 7-8).

A more novel alternative is to bury the biomass, such as sugarcane or other fast-growing grasses, which could sequester 8x more CO2, with superior economics at $15-50/ton CO2 prices (pages 9-11).

Company implications are summarized, suggesting how the ethanol industry might be displaced, and quantifying the CO2 intensity of incumbents (page 12).

US shale: the quick and the dead?

It is no longer possible to compete in the US shale industry without leading digital technologies. This 10-page note outlines best practices, process by process, based on 500 patents and 650 technical papers. Chevron, Conoco and ExxonMobil lead our screens. We profile where they have an edge, to capture upside in the industry’s dislocation and recovery. Disconcertingly absent from the leader-board is EOG, whose long-revered technical edge may now have been eclipsed by others.

LNG: deep disruptions?

There is now a potential 100MTpa shortfall in 2024-26 LNG supplies: deeply negative for energy transition, but positive for LNG incumbents. The last oil industry crisis, in 2014-16, slowed down LNG project progress, setting the stage for 20-60MTpa of under-supply in 2021-23. The current COVID-crisis could cause a further 15-45MTpa of supply-disruptions, after looking line-by-line through our database of 120 projects, described in this 6-page note.

The future of offshore: fully subsea?

Offshore developments will change dramatically in the 2020s, eliminating new production platforms in favour of fully subsea solutions. The opportunity can increase a typical project’s NPV by 50%, reduce its breakeven by one-third and effectively eliminate upstream CO2 emissions. We have reviewed 1,850 patents to find the best-placed operators and service providers, versus others that will be disrupted. Overall, the theme supports the ascent of low-carbon natural gas, which should treble in the energy mix by 2050. This 22-page note presents the opportunity.

The offshore oil and gas industry’s progress towards ‘fully subsea’ developments, without any platforms or surface infrastructure being necessary, is reviewed in detail in pages 2-5, covering key projects and milestones from 1985-2000.

30% economic savings in both capex and opex are quantified line-by-line, across c50 cost lines, in pages 6-9.

1.5x NPV uplifts and 4pp IRR uplifts are quantified by modelling a representative fully greenfield gas-condensate project on pages 11-12.

CO2 emissions can be virtually eliminated by a fully subsea development solution. Pages 12-13 add up the impacts of higher efficiency, power from shore, fewer materials and the elimination of PSV/helicopter trips.

The key engineering challenges for fully subsea systems, which remain to be resolved, are summarized on page 14.

Who benefits from the trend toward fully subsea systems, is described from page 15 onwards after reviewing 1,850 patents around the industry. This includes both the leading service companies and operators (primarily Equinor, but also TOTAL, Shell).

The leaders in subsea compression technology are assessed on pages 16-17.

The leaders in subsea power systems are described on pages 18-19.

The leaders in next-generation subsea robotics are assessed on pages 20-21.

Others are disrupted, as is described in detail in page 22.

Covered service companies in the report include ABB, Aker, Eelume, GE, Kraken, Oceaneering, OneSubsea, Saipem, Siemens, Technip-FMC, Wood Group, the PSV and helicopter sector, and c20 early stage companies in next-generating subsea robotics.

Decarbonise Downstream?

Refining has the highest carbon footprint in global energy. Next-generation catalysts are the best opportunity for improvement: uniquely, they could cut refineries’ CO2 by 15-30%, while also uplifting margins, which get obliterated by other decarbonisation approaches. Catalyst science is undergoing a digitally driven transformation. Hence this 25-page note outlines a new ESG opportunity around refining catalyst technologies. Industry leaders are also identified.

Pages 2-3 outline the need to decarbonise the refining industry, in order to clean up the world’s future oil production and preserve access to capital.

Pages 4-6 decompose the sources of CO2 emissions across a typical refinery, process-by-process; as a function of heat, utilities and hydrogen.

Page 7-8 outline small opportunities to improve refinery CO2 intensities, via continued process enhancements, changing crude slates and renewable energy.

Page 9 finds green hydrogen can reduce CO2 emissions by c7-15%, but economics are unfavorable, obliterating refining margins.

Pages 10-12 models the costs of post-combustion carbon capture, which could cut CO2 intensities by 25-90%, but also risks cutting margins by $2-4/bbl.

Pages 13-14 present the opportunity for better catalysts, identifying which Energy Majors have the leading refining technologies, based on patent filings.

Pages 15-17 outline the most promising, emerging catalyst technologies from 50 patents we studied. They can reduce refinery CO2 intensities by 5kg/bbl.

Pages 18-21 highlight breakthrough, digital technologies to improve the development of new catalysts, including super-computing and machine learning techniques.

Pages 23-24 screen 35 leading catalyst companies, including Super-Majors, chemicals companies and earlier-stage pure-plays.

Patent Leaders in Energy

Technology leadership is crucial in energy. It drives costs, returns and future resiliency. Hence, we have reviewed 3,000 recent patent filings, across the 25 largest energy companies, in order to quantify our “Top Ten” patent leaders in energy.

This 34-page note ranks the industry’s “Top 10 technology-leaders”: in upstream, offshore, deep-water, shale, LNG, gas-marketing, downstream, chemicals, digital and renewables.

For each topic, we profile the leading company, its edge and the proximity of the competition.

Companies covered by the analysis include Aramco, BP, Chevron, Conoco, Devon, Eni, EOG, Equinor, ExxonMobil, Occidental, Petrobras, Repsol, Shell, Suncor and TOTAL.

Upstream technology leaders have been discussed in greater depth in our April-2020 update, linked here.

More information? Please do not hesitate to contact us, if you would like more information about accessing this document, or taking out a TSE subscription.

Mero Revolutions: countering CO2 in pre-salt Brazil?

The super-giant Mero field in pre-salt Brazil is not like its predecessors. While prolific, it has a 2x higher gas cut, of which c45% is corrosive and environmentally unpalatable CO2. Hence, Petrobras, Shell, TOTAL and two Chinese Majors are pushing the boundaries of deepwater technology. Our new, 16-page note assess four innovation areas, which could unlock $2bn of NPV upside. But the distribution of outcomes remains broad. $4bn is at risk if the CO2-challenges are not overcome.

Page 2 provides background on pre-salt Brazil, especially the flagship Lula project, which a new super-giant, Mero, is trying to emulate.

Page 3-4 contrast Mero to Lula, based on data from flow-tests. Mero has a 2x higher gas-cut and c8x higher CO2.

Page 5 reviews Petrobras’s own internal concerns over CO2-handling at Mero, and how they are expected to sway the decline rates at the field.

Page 6 outlines our valuation of the Mero oilfield, testing different CO2-handling scenarios. Our full model is also available.

Pages 7-8 review Mero’s FPSO design adaptations, to handle the field’s higher gas and CO2. These will be 2-2.5x larger FPSOs than Lula, by tonnage.

Pages 8-10 illustrate pipeline bottlenecks facing pre-salt Brazil. After considering alternative options (re-injection, LNG), we argue more pipelines may be needed.

Pages 10-12 describe riser innovations, which may help handle the risks of CO2-corrosion at Mero. One option is overly complex. The other is more promising.

Pages 12-16 cover the holy grail for Mero’s CO2, which is subsea CO2 separation. This would be a major industry advance, and unlock further billion-barrel resource opportunities. Upcoming hurdles and challenges are assessed.

Pages 15-16, in particular, cover Shell’s industry-leading deepwater technology, which may be helpful in maximising value from the resource, longer-term.

Does Technology Drive Returns?

Technology drives 30-60% of energy companies’ return on capital. This is our conclusion after correlating 10 energy companies’ ROACEs against 3,000 patent filings. Above average technologies are necessary to generate above-average returns.

For the first time, we have been able to test the relationship between oil companies’ technical abilities and their Returns on Average Capital Employed (ROACE).

In the past, technical capabilities have been difficult to quantify, hence this crucial dimension has been overlooked by economic analysis in the energy sector.

Our new methodology stems from our database of 3,043 patents, filed by the Top 25 leading energy companies in 2018. The data cover upstream, downstream, chemicals and new energy technologies (chart below) . All the patents are further summarised, “scored” and classed across 40 sub-categories.

The methodology is to correlate our patent-scores for each company with the ROACE generated by the company in 2018. We ran these correlations at both the corporate level and the segment level…

Results: patent filings predict returns

Patent filings predict corporate returns. In 2018, the average of the Top 10 Integrated Oil Majors generated a Return on Average Capital Employed (ROACE) of 11%, based on our adjusted, apples-to-apples calculation methodology. These returns are 54% correlated with the number of patents filed by each Major (chart below).

Technology leaders are implied to earn c5% higher corporate returns than those deploying industry-average technologies, which is a factor of 2x.

Upstream patent filings also predict upstream returns, with an 85% correlation coefficient. The data are skewed by one Middle East NOC, which earns exceptionally high returns on capital, but even excluding this datapoint, the correlation coefficient is 65% (chart below).

The curve is relatively flat, with the exception of two outliers, implying that it is hardest to improve general upstream returns using technology. This may be because upstream portfolios are vast, spanning many different asset-types and geographies.

Downstream patent filings predict downstream returns, with an 80% correlation coefficient (chart below). However, our sample size is smaller, as we were unable to dis-aggregate downstream ROACE for all the Majors.

The curve is very steep, indicating that downstream technology leaders can surpass c20% returns on capital, versus c10% using industry-standard technologies.

Chemical patent filings predict chemical returns, with a 57% correlation coefficient (chart below). Again, our sample size is smaller, as we could only estimate chemicals ROACEs for some of the Majors.

The curve is also steep, with technology leaders earning c10-20% returns, versus low single digit returns for less differentiated players.

Overall, the results should matter for investors in the energy sector, for capital allocation within corporates, and for weighing up the benefits of in-house R&D. We would be delighted to discuss the underlying data with you in more detail.

Shell drives LNG in transport?

Shell is the leading Major in driving new LNG demand, based on patent filings (chart above). As an example, we highlight a leading new technology to promote LNG demand in transportation, by mitigating the problem of boil-off.

Please log in to view this content