Carbon capture on ships: raising a sail?

CCS is adapting to ‘go to sea’. 80% of some ships’ CO2 emissions could be captured for a cost of c$100/ton and an energy penalty of just 5%, albeit this is the best case within a broad range. This 15-page note explores the opportunity, challenges, progress and who might benefit.

Different options to decarbonize the shipping industry are compared and contrasted on pages 2-4, including the abatement costs of different blue and green fuels.

But what about CCS? The technology is mature. However, CCS on a ship would have different parameters from onshore. We discuss three key considerations on pages 5-7.

Will it actually work? The question is whether you can put an amine plant on a floating structure, store the CO2 as a liquid, and expect the entire system to function. We believe the answer is yes, based on reviewing technical papers, as summarized on 8-10.

$100/ton economics are possible. We use our models to outline what you need to believe to reach these numbers, including sensitivities, and applicability to different shipping types and routes (pages 11-12).

Which companies benefit? We explore implications for leading capital goods companies, chemicals companies and small-scale LNG on page 13.

A new infrastructure industry would also be required, to handle CO2 in ports, move it to disposal sites, or integrate with CO2-EOR. We discuss this theme on pages 14-15.

Shell drives LNG in transport?

Shell is the leading Major in driving new LNG demand, based on patent filings (chart above). As an example, we highlight a leading new technology to promote LNG demand in transportation, by mitigating the problem of boil-off.

You do not have access to this post.
Please log in to view this content

LNG in transport: scaling up by scaling down?

Next-generation technology in small-scale LNG has potential to reshape the global shipping-fuels industry. Especially after IMO 2020 sulphur regulations, LNG should compete with diesel. Opportunities in trucking and shale are less clear-cut.

This note outlines the technologies, economics and opportunities for LNG as a transport fuel, following a three-month investigation.

  • Why technology matters. Pages 2-4 of the note describe incumbent technologies in small-scale LNG, and the need for superior solutions.

  • The cutting edge . Pages 5-7 draw on patents and technical papers to describe next-generation technologies, at the cutting edge of small-scale LNG. We model that they are economic. They can can provide LNG to the market at $10/mcf.

  • Potential to transform shipping-fuels. Pages 9-13 find strong economic upside for novel LNG technologies in the shipping industry, with potential to create 40-60MTpa of incremental LNG demand, looking across the global shipping fleet.

  • Less positive on LNG as a trucking fuel. Pages 14-15 explain why the economics are more challenging for LNG use in land-transportation, i.e., trucking.

  • Less positive on LNG use in shale. Page 16 explains, similarly, why LNG is less advantageous in the shale patch than converting rigs and frac spreads to piped gas.

  • Other technologies. Page 17 notes other companies with interesting offerings in small-scale LNG liquefaction, including advances by Exxon and Shell.

Have further questions? Please contact us and we’ll be happy to help: [email protected]

Is gas a competitive truck-fuel?

We have assessed whether gas is a competitive trucking fuel, comparing LNG and CNG head-to-head against diesel, across 35 different metrics (from the environmental to the economic). Total costs per km are still 10-30% higher for natural gas, even based on $3/mcf Henry Hub, which is 5x cheaper than US diesel. The data-file can be downloaded here.

The challenges are logistical. Based on real-world data, we think maintenance costs will be 20-100% higher for gas trucks (below). Gas-fired spark plugs need replacing every 60,000 miles. Re-fuelling LNG trucks requires extra safety equipment.

Specially designed service stations also elevate fuel-retail costs by $6-10/mcf. Particularly for LNG, a service station effectively ends up being a €1M regasification plant (or around $250/tpa, costs below).

We remain constructive on the ascent of gas (below), but road vehicles may not be the best option.

To flex our input assumptions, please download our data-model, comparing LNG, CNG and other trucking fuels across 35 different metrics .

Why the Thunder Said?

Energy transition is underway. Or more specifically, five energy transitions are underway at the same time. They include the rise of renewables, shale oil, digital technologies, environmental improvements and new forms of energy demand. This is our rationale for establishing a new research consultancy, Thunder Said Energy, at the nexus of energy-technology and energy-economics.

This 8-page report outlines the ‘four goals’ of Thunder Said Energy; and how we hope we can help your process…

Pages 2-5 show how disruptive energy technologies are re-shaping the world: We see potential for >20Mbpd of Permian production, for natural gas to treble, for ‘digital’ to double Oil Major FCF, and for the emergence of new, multi-billion dollar companies and sub-industries amidst the energy transition.

Page 6 shows how we are ‘scoring’ companies: to see who is embracing new technology most effectively, by analysing >1,000 patents and >400 technical papers so far.

Page 7 compiles quotes from around the industry, calling for a greater focus on technology.

Page 8 explains our research process, and upcoming publication plans.