Logo image

the research consultancy for energy technologies

costs required to scale up renewables

Scaling Up Renewables and Batteries

This model aims to calculate the average costs and the incentive prices required to scale up renewables in a typical developed world grid, from 25% to 40%, then to 50%, then to 60%.


The economics are modelled as a function of renewable costs, battery costs, curtailment rates, gas prices and carbon prices, which you can flex.

The calculations are based on Monte Carlo simulations using real-world data on wind and solar volatility, which dictates the curtailment rate of renewables and the utilziation rates of batteries that are built as a backstop.

We conclude that renewables will cap out at 45-50% of fixed-demand grids, even with the benefit of batteries. Beyond 50%, curtailment surpass 70%, trebling incentive pricing.  Large-scale batteries also increase incentive prices 5-25x. Natural gas is the best complement for renewables, with both between 25-50% of grid demand.

What can help integrate more renewables into grids is demand-shifting, per our recent note, which effectively accommodates another 10pp share of renewables at no incremental cost.

Content by Category

Show More