US shale gas: the economics?

This data-file breaks down the economics of US shale gas, in order to calculate the NPVs, IRRs and gas price breakevens of future drilling in major US shale basins (predominantly the Marcellus).

Underlying the analysis is a granular model of capex costs, broken down across 18 components. Our base case conclusion is that a $2/mcf hub pricing is required for a 10% IRR on a $7.2M shale gas well with 1.8kboed IP30 production.

Economics are sensitive. There is a perception the US has an infinite supply of gas at $2/mcf, but rising hurdle rates and regulatory risk may require higher prices.

The Top Public Companies for an Energy Transition

This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.

Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.

Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.

The screen is updated monthly. At the latest update, in October-2020, it contains 180 differentiated views on 90 public companies.

US shale: the economics?

This data-model breaks down the economics of US shale, in order to calculate NPVs, IRRs and oil price break-evens of future drilling in major US basins (predominantly the Permian, but also Bakken and Eagle Ford).

Our base case conclusion is that a $40/bbl oil price is required for a 10% IRR on a $7.0M shale well with 1.0 kboed of IP30 production. Break-evens mostly vary within a range of $35-50/bbl. They are most sensitive to productivity, which can genuinely unlock triple-digit IRRs, even at $40/bbl.

Underlying the analysis is a granular model of capex costs, broken down across 18 components (chart below). Costs are calculated off of input variables such as rig rates, frac crew costs, diesel prices, sand prices, tubular steel prices, cement prices and other more niche services.

Stress-testing the model. You can flex input assumptions in the ‘NPV’ and ‘CostBuildUp’ tabs of the model, in order to assess economic consequences.


US shale sand mines: simple economics?

This model is a very simple breakdown of economics for in-basin sand production, around the US shale industry. We estimate the price that must be charged at the mine gate for a typical facility to make a 10% return.

The model can also be used to quantify the potential savings from shifting from dry sand to wet sand, estimated at c25% of total costs.

US shale: our outlook in the energy transition?

This presentation covers our outlook for the US shale industry in the energy transition, and was presented at a recent investor conference.

The importance of shale oil supplies in a fully decarbonized energy system is contextualized on pages 1-7. Production must grow by a vast 2.6Mbpd in 2022-25 to keep oil markets well supplied, even as oil demand plateaus. Otherwise, devastating oil shortages may de-rail the transition.

This requires a 5% CAGR in shale productivity. We argue in favor of future productivity growth, based on the evidence from 950 technical papers, which we have reviewed, on pages 8-12.

But can the industry attract capital? This now hinges upon carbon credentials. Laggards will have >25kg/boe of upstream CO2 while leaders have the opportunity to be CO2-neutral. The division (and the  prize) is outlined on pages 13-19.

US Shale: the second coming?

Future US shale productivity can still rise at a 5% CAGR to 2025, based on evaluating 300 technical papers from 2020. The latest improvements are discussed in this 12-page note, and may spark more productivity gains than any prior year. Thus unconventionals could grow by 2.6Mbpd per annum from 2022-25 to quench deeply under-supplied oil markets. But hurdles remain. The leading technologies are also becoming concentrated in the hands of fewer operators and an emerging group of oil services.

Ventures for an Energy Transition?

This database tabulates almost 300 venture investments made by 9 of the leading Oil Majors, as the energy industry advances and transitions.

The largest portion of activity is now aimed at incubating New Energy technologies (c50% of the investments), as might be expected. Conversely, when we first created the data-file, in early-2019, the lion’s share of historical investments were in upstream technologies (c40% of the total). The investments are also highly digital (c40% of the total).

Four Oil Majors are incubating capabilities in new energies, as the energy system evolves. We are impressed by the opportunities they have accessed. Venturing is likely the right model to create most value in this fast-evolving space.

The full database shows which topic areas are most actively targeted by the Majors’ venturing, broken down across 25 sub-categories, including by company. We also chart which companies have gained stakes in the most interesting start-ups.

The Top Technologies in Energy

What are the top technologies to transform the global energy industry and the world? This data-file summarises where we have conducted differentiated analysis, across c90 technologies (and counting).

For each technology, we summarise the opportunity in two-lines. Then we score its economic impact, its technical maturity (TRL), and the depth of our work to-date. The output is a ranking of the top technologies, by category; and a “cost curve” for the total costs to decarbonise global energy.

Download this data-file and you will also receive updates for a year, as we add more technologies; and we will also be happy to dig into any technologies you would like to see added to the list.

US shale: the quick and the dead?

It is no longer possible to compete in the US shale industry without leading digital technologies. This 10-page note outlines best practices, process by process, based on 500 patents and 650 technical papers. Chevron, Conoco and ExxonMobil lead our screens. We profile where they have an edge, to capture upside in the industry’s dislocation and recovery. Disconcertingly absent from the leader-board is EOG, whose long-revered technical edge may now have been eclipsed by others.

Methane emissions from pneumatic devices, by operator, by basin

Methane leaks from 1M pneumatic devices across the US onshore oil and gas industry comprise 50% of all US upstream methane leaks and 15% of all upstream CO2. This data-file aggregates data on 500,000 pneumatic devices, from 300 acreage positions, of 200 onshore producers in 9 US basins.

The data are broken down acreage position by position, from high-bleed pneumatic devices, releasing an average of 4.1T of methane/device/year to pnuematic pumps and intermediate devices, releasing 1.4T, through to low-bleed pneumatic devices releasing 160kg/device/year.

It allows us to rank operators. Companies are identified, with a pressing priority to replace medium and high bleed devices. Other companies are identified with best-in-class use of pneumatics (chart below). The download contains 2018 and 2019 data, so you can compare YoY progress by company.

A summary of our conclusions is also written out in the second tab of the data-file.  For opportunities to resolve these leaks and replace pneumatic devices, please see our recent note on Mitigating Methane.