US shale: our outlook in the energy transition?

This presentation covers our outlook for the US shale industry in the energy transition, and was presented at a recent investor conference.

The importance of shale oil supplies in a fully decarbonized energy system is contextualized on pages 1-7. Production must grow by a vast 2.6Mbpd in 2022-25 to keep oil markets well supplied, even as oil demand plateaus. Otherwise, devastating oil shortages may de-rail the transition.

This requires a 5% CAGR in shale productivity. We argue in favor of future productivity growth, based on the evidence from 950 technical papers, which we have reviewed, on pages 8-12.

But can the industry attract capital? This now hinges upon carbon credentials. Laggards will have >25kg/boe of upstream CO2 while leaders have the opportunity to be CO2-neutral. The division (and the  prize) is outlined on pages 13-19.

US Shale: the second coming?

Future US shale productivity can still rise at a 5% CAGR to 2025, based on evaluating 300 technical papers from 2020. The latest improvements are discussed in this 12-page note, and may spark more productivity gains than any prior year. Thus unconventionals could grow by 2.6Mbpd per annum from 2022-25 to quench deeply under-supplied oil markets. But hurdles remain. The leading technologies are also becoming concentrated in the hands of fewer operators and an emerging group of oil services.

The Top Public Companies for an Energy Transition

This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.

Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.

Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.

The screen is updated monthly. At the latest update, in October-2020, it contains 180 differentiated views on 90 public companies.

Ventures for an Energy Transition?

This database tabulates almost 300 venture investments made by 9 of the leading Oil Majors, as the energy industry advances and transitions.

The largest portion of activity is now aimed at incubating New Energy technologies (c50% of the investments), as might be expected. Conversely, when we first created the data-file, in early-2019, the lion’s share of historical investments were in upstream technologies (c40% of the total). The investments are also highly digital (c40% of the total).

Four Oil Majors are incubating capabilities in new energies, as the energy system evolves. We are impressed by the opportunities they have accessed. Venturing is likely the right model to create most value in this fast-evolving space.

The full database shows which topic areas are most actively targeted by the Majors’ venturing, broken down across 25 sub-categories, including by company. We also chart which companies have gained stakes in the most interesting start-ups.

The Top Technologies in Energy

What are the top technologies to transform the global energy industry and the world? This data-file summarises where we have conducted differentiated analysis, across c80 technologies (and counting).

For each technology, we summarise the opportunity in two-lines. Then we score its economic impact, its technical maturity (TRL), and the depth of our work to-date. The output is a ranking of the top technologies, by category; and a “cost curve” for the total costs to decarbonise global energy.

Download this data-file and you will also receive updates for a year, as we add more technologies; and we will also be happy to dig into any technologies you would like to see added to the list.

US shale: the quick and the dead?

It is no longer possible to compete in the US shale industry without leading digital technologies. This 10-page note outlines best practices, process by process, based on 500 patents and 650 technical papers. Chevron, Conoco and ExxonMobil lead our screens. We profile where they have an edge, to capture upside in the industry’s dislocation and recovery. Disconcertingly absent from the leader-board is EOG, whose long-revered technical edge may now have been eclipsed by others.

Methane emissions from pneumatic devices, by operator, by basin

Methane leaks from 1M pneumatic devices across the US onshore oil and gas industry comprise 60% of all US upstream methane leaks and 23% of all upstream CO2. This data-file aggregates data on 563,000 pneumatic devices, from 300 acreage positions, of 200 onshore producers in 9 US basins.

The data are broken down acreage position by position, from high-bleed pneumatic devices, releasing an average of 4.2T of methane/device/year to pnuematic pumps and intermediate devices, releasing 1.5T, through to low-bleed pneumatic devices releasing 160kg/device/year.

It allows us to rank operators. 12 companies are identified, with a pressing priority to replace c135,000 medium and high bleed devices. 6 companies are identified with best-in-class use of pneumatics (chart below).

A summary of our conclusions is also written out in the second tab of the data-file.  For opportunities to resolve these leaks and replace pneumatic devices, please see our recent note on Mitigating Methane.

The Ascent of Shale

This model contains our live, basin-by-basin shale forecasts. It covers the Permian, Bakken and Eagle Ford, as a function of the rig count, drilling productivity, completion rates, well productivity and type curves. Thus, we derive production and financial expectations.

For 2020, we model the impacts of a price collapse to $30/bbl. We see shale declining by 3Mbpd from April 2020 to mid-2021. It takes until YE22 to recover to the prior peak. Record FCF may be generated in the recovery.

Our longer-term numbers hinge on the productivity gains described in our thematic research. Shale productivity trebled from 2012-2018. We think it can effectively double again by 2025. This would unleash c20Mbpd of US liquids production by 2025, within cash flow at a flat $50/bbl Brent input.

Fugitive methane: what components are leaking?

This data-file looks through 35 different technical papers and data-sources to tabulate the methane leaks from different components around the oil and gas industry.

The largest leaks per event are from losses of well control, which can emit 10-1M tons per annum. Next are mid- and downstrseam facilities at 1-10kTpa.

The largest leaks by upstream component are compressor seals (1-100Tpa) and millons of pneumatic devices (0.01-10Tpa), which each comprise c20-30% of total upstream leaks.

Potentially overlooked categories include wellheads, storage tanks and workover practices. All are quantified in the data-file. The theme is addressed in detail in our note, mitigating methane.

Hydraulic Fracturing: where’s the IP?

This data-file tracks 17,000 hydraulic fracturing patents filed by geography, by company, by year, since 2010; but particularly in 2019.

Frac patents peaked in 2017-18 at c3,900 per year. 2020 has slowed by 6%. But the headline figures mask a c36% correction in the US, masked by 33% expansion of Chinese shale ambitions. Remarkably, in 2019, the leading Chinese Major filed more hydraulic fracturing patents than the leading US Service provider.

Company trends. Over the past three years, among larger companies, the top US Services filed c45% of the patents, Chinese Majors filed c40%, DM producers filed c5% and niche service copanies files c10%.

A granular breakdown for 2019 tabulates 1,900 patents, including their descriptions, which you can interrogate fully.