The Top Public Companies for an Energy Transition

This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.

Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.

Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.

The screen is updated monthly. At the latest update, in February-2021, it contains 200 differentiated views on 100 public companies.

Next-generation plastics: bio-plastic, bio-degradable, recycled?

This data-file captures c10% of the plastics market that is derived from mechanical recycling, from biologically-sourced feedstocks or that is bio-degradable.

The largest and most attractive option today is conventional mechanical recycling, which tends to reduce CO2 by 50% and cost less than virgin plastic. But only c25% of plastic is well-suited to mechanical recycling.

Bio-degradable plastic derived from biomass is likely c30% lower in CO2 than conventional plastics, but around 2x more costly.

The data-file reviews seventeen distinct  plastic products, estimating the market sizes, CO2 levels, costs, production processes, uses and other notes from technical papers.

Ethane cracking: the economics?

This data-file captures the economics of ethane-cracking in order to produce ethylene, the most basic building block of the petrochemical industry.

We estimate that a typical US Gulf Coast facility could generate 15% IRRs at typical capex cost of $1,135/Tpa and selling ethylene close to $1,000/ton.

CO2 intensity can be as high as 1.7T of CO2 per ton of ethylene, or potentially lower depending on the facility’s use of energy recovery and heat re-capture.

Please downlaod the model to stress-test sensitivities.

Construction materials: a screen of costs and CO2 intensities?

This data-file compares different construction materials, calculating the costs, the embedded energy and the embedded CO2 of different construction materials per m2 of wall space.

The file captures both capex and opex: i.e., the production of the materials and the ongoing costs associated with heating and cooling, as different materials have different thermal conductivities.

Covered materials include conventional construction materials such as concrete, cement, steel, brick, wood and glass, plus novel wood-based materials such as cross-laminated timber. Insulated wood and CLT are shown to have the lowest CO2 intensities and can be extremely cost competitive.

Cross-laminated timber: the economics?

This data-file captures the economics of cross-laminated timber, a fast-growing construction material that is c80% less CO2-intensive when substituted directly for traditional building materials such as concrete and steel, and results in buildings with 15-35% lower embedded CO2.

The economics are exciting. We find potential to generate 20% IRRs purchasing $25/ton timber and converting into $500/m3 CLT in newbuild production facilities costing $800/m3 pa.

The economics can be stress-tested in the model. Underlying capex, opex and case studies and companies are profiled in subsequent tabs.

CO2 electrolysis: the economics?

Carbon monoxide is an important chemical input for metals, materials and fuels. Could it be produced by capturing CO2 from the atmosphere or using the amine process, then electrolysing the CO2 into CO and oxygen?

This data-file models the economics of CO2 electrolysis, including recent advances from leading industrial gas companies, and by analogy to hydrogen electrolysis.

10% IRRs can be achieved at $800/ton carbon monoxide pricing, which can be competitive with conventional syngas production, and far more economic than small-scale distribution of CO containers.

The data-file contains input assumptions, detailed notes from half-a-dozen recent technical papers, and short summary of different companies’ initiatives, including Haldor Topsoe, Siemens, Covestro, Methanex and Carbon Recycling.

The Top Technologies in Energy

What are the top technologies to transform the global energy industry and the world? This data-file summarises where we have conducted differentiated analysis, across c90 technologies (and counting).

For each technology, we summarise the opportunity in two-lines. Then we score its economic impact, its technical maturity (TRL), and the depth of our work to-date. The output is a ranking of the top technologies, by category; and a “cost curve” for the total costs to decarbonise global energy.

Download this data-file and you will also receive updates for a year, as we add more technologies; and we will also be happy to dig into any technologies you would like to see added to the list.

Turn the Plastics into Roads?

An opportunity is emerging to absorb mixed plastic waste, displacing bitumen from road asphalts. We find strong economics, with net margins of $200/ton of plastic, deflating the materials costs of roads by c4%. The challenge is scaling the opportunity beyond 20MTpa, as unrecycled waste plastics surpass 320MTpa. Leading companies include Dow (US, public) and MacRebur (UK, private).

CO2 from plastics and petrochemical facilities?

This data-file aims to quantify the CO2 intensity of producing plastics, across the entire value chain from oil and gas inputs, to cracking, polymerisation, extrusion and end-of-life treatment.

Granular data are tabulated on 70 chemicals facilities around the US. Most facilities are not directly comparable. However, we have derived meaningful CO2 intensity data (per ton of product) for c20 of them. We find large and integrated petchem facilities tend to be more efficient (chart below)Beneficial energy economics for plastics are confirmed in the work. For example, our numbers suggest the CO2 emissions for a single-use plastic bottle would be c90% lower than a single-use glass bottle. Numbers could be further improved by next-generation technologies turning plastic back into oil.

 

The Top 25 Companies in Plastics Pyrolysis?

This data-file assesses the outlook for 25 plastic pyrolysis companies, operating  (or constructing) 100 plants around the world, which use chemical processes to turn waste plastics back into oil.

Our data-file includes the number of plants, locations, start-up years, input-types and capacities for each plant. We also include our own notes, our assessment’s of each company’s technology.

The data-file has been updated in 1Q20, revising our rankings, and adsding an assessment of 2019’s pace of newsflow. It is extremely encouraging to see Super-Majors entering the fray (Shell, TOTAL, BP), as well as strong progress from the leading companies.