Vehicles: energy transition conclusions?

Vehicles transport people and freight around the world, explaining 70% of global oil demand, 30% of global energy use, 20% of global CO2e emissions. This overview summarizes all of our research into vehicles, and key conclusions for the energy transition.

Electrification is a revolution for small vehicles, a mega-trend of the 21st century. We also believe that large and long-range transportation will remain predominantly combustion-fueled due to unrivalled energy density and practicality. It is most cost-effectively decarbonized via promoting efficiency gains, lower-carbon fuels and CO2 removals.

(1) Electrification is a game changer for light-vehicles, with 3-5x greater fuel economy than combustion vehicles (database here), due to inexorable thermodynamic differences between electric motors and heat engines (overview note here).

(2) Electric vehicle technology continues to improve, in an early innings, with multi-decade running room, which makes it an interesting area for decision makers to explore. We have profiled axial flux motors, which promise 2-3x higher power densities, even versus Tesla’s world-leading PMRSRMs while surpassing 96% efficiencies (note here). And SiC power electronics that unlock faster and more efficient switching in the power MOSFETs underlying EV traction inverters.

(3) New and world-changing vehicle types will also be unlocked by electric motors’ greater compactness, simplicity and controllability. e-mobility provides an example with the lowest energy costs per passenger on our chart above. Albeit futuristic, we have also written on opportunities in aerial vehicles, drones and drones, robotics, airships, military technologies, inspection technologies.

(4) EV Charging. Each 1,000 EVs will ultimately require 40 Level 2 (30-40kW) and 3.5 Level 3 (100+ kW) chargers (NREL estimates). But we wonder if EV charging infrastructures will ultimately get overbuilt (for reasons in our note here). Is there a moat in the patents of EV charging specialists, such as Chargepoint? Or Nio? As a result, we are particularly excited by the shovel-makers, the suppliers of materials and electronic components, that will feed into chargers, especially fast chargers. Granular costs of EV chargers are modelled here, and can be compared with the 17c/gallon net margins of conventional fuel retail stations here. An amazing statistic is that a conventional fuel pump dispenses 100x more fuel per minute than a 150kW fast-charger, and we wonder if fast-chargers will stoke demand for CHPs (note here).

(5) Large vehicles that cover large distances face different constraints. For example, once the battery in a heavy truck surpasses 8 tons, yielding c50% of the range of a diesel truck, then additional battery weight starts eating into cargo capacity (data here). And the range of a purely battery powered plane is currently around 90km (data here).

(5a) For trucks, an excellent data-file comparing diesel, LNG, CNG, LPG and H2 fuelling is here. There may be some niche deployments of electric trucks and hydrogen trucks. But we think the majority of long distance, inter-continental trucking will remain powered by liquid fuels, i.e., oil products. Although they may improve efficiency by hybridizing (energy saving data here), including using super-capacitors (note here).

(6) Economics of scale. Larger vessels, which carry more passengers, more freight are inherently more energy efficient. This is visible in the title chart. And we have modelled the economics of container ships, LNG shipping, commercial aviation, mine trucks, electric railways, pipelines and other offshore vessels.

(7) Light-weighting also improves fuel economy, as energy consumption is a linear function of mass, and replacing 10% of a vehicle’s steel with carbon fiber can imrove fuel economy by 16% (vehicle masses are built up here). Polymers research here. This can be compared with typical vehicle manufacturing costs.

(8) Automating vehicles can also make them 15-35% more efficient (note here), although we also wonder whether the improved convenience would also result in more demand for long-distance road travel…

(9) Changing demand patterns? Autos are c95% of <500-mile trips today, planes are c90% of >1,000-mile trips; while long distance travel is c50% leisure and visiting friends (data here). Travel demand correlates with income across all categories (data here). Travel speeds have also improved by over 100x since pre-industrial times (excellent data here, breaking down travel by purpose, vehicle and demographics). We estimate the distribution chain for the typical US consumer costs 1.5bbls of fuel, 600kg of CO2 and $1,000 per annum, across container ships, railways, trucks, delivery vans and cars (data here). But displacing travel demand delivers the deepest reductions of all, in the energy intensity of transportation. Thus we would also consider remote work (note here), digitization (category here), traffic optimization and recycling (here) together with vehicle efficiency technologies. They are all related. But as always, there are good debates to be had about future energy demand and fears over Jevons Paradox.

(10) Hydrogen vehicles. Despite looking for opportunities in hydrogen vehicles and e-fuels, we think there may be more exciting decarbonization opportunies elsewhere: due to higher costs, high energy penalties and challenging practicalities. This followes notes into hydrogen trucks; and data-files into Goldilocks-like fuel cells and hydrogen fuelling stations. A summary of all of our hydrogen research is linked here.

The data-file linked below summarizes all of our research to-date into vehicles, which follows below in chronological order. Note that we have generally shown energy use on a wagon-to-wheel basis and assume 2.0 passengers per passenger vehicle. You can stress test all of the different inputs ($/gal fuel, c/kWh electricity, $/kg hydrogen) in the data-file. Other excellent comparison files are here (EVs vs ICEs, ICEs vs H2 vehicles, diesel vs LNG vs H2 trucks). We have also published similar overviews for our research into batteries, electrification, battery metals and other important materials in the energy transition.

Offshore vessels: fuel consumption?

This database tabulates the typical fuel consumption of offshore vessels, in bpd and MWH/day. We think a typical offshore construction vessel will consume 300bpd, a typical rig consumes 200bpd, supply vessels consume 150bpd, cable-lay vessels consume 150bpd, dredging vessels consume 100bpd and medium-sized support vessels consume 50bpd. Examples are given in each category, with typical variations in the range of +/- 50%.

Hillcrest: ZVS inverter breakthrough?

Hillcrest Technology Review

Hillcrest Energy Technologies is developing an ultra-efficient inverter, which has 30-70% lower switching losses, up to 15% lower system cost, weight, size; low thermal management needs, high reliability, and confers up to 13% higher range than today’s inverters, especially for use in EV powertrains; but also in wind, solar, batteries and fast-chargers. It is based on SiC semiconductors. This Hillcrest technology review presents our conclusions from patents and technical papers.

Hillcrest was founded in 2006, is based in Vancouver, Canada with c15-20 employees. It is publicly listed, with market cap of $25M (Feb-23) and shares traded on the OTCQB Venture Market and Frankfurt Stock Exchange.

It is developing a Zero Voltage Switching (ZVS) inverter. What does this mean, and why does it matter?

Inverters convert DC power to AC power via pulse width modulation, which is covered in our primer into electricity. Specifically, electrical switches create bursts of current, of increasing frequency, then decreasing frequency, then increasing frequency, then decreasing frequency. When these power bursts are averaged out, they resemble an AC sine wave (chart below). This AC power signal can be used to feed power into the grid, or to drive the electric motors in an electric vehicle. The switches are MOSFETs or IGBTs.

The quality of the AC power signal depends on the switching frequency. Fewer pulses (each with longer length and longer gaps) creates a jagged AC sine wave. Whereas more pulses (with shorter length and shorter gaps) produces a smoother sine wave. A nice analogy is thinking about how video quality increases with a higher frame rate. So why don’t inverters dial up the switching frequency to the max?

Switches incur a small power loss every time they switch on and switch off. The reason is that when the switch is off, there is a potential difference (aka a voltage) across the junction (dark green, chart below). When the switch starts to turn on, current starts to flow from source to drain (light green, chart below). The current ramps up as the voltage ramps down. And thus, in the middle, power is dissipated, as power = voltage x current (yellow line, chart below). And so usually, the higher the switching frequency, the higher the switching losses.

Zero Voltage Switching, as the name implies, cuts the voltage from source->drain towards zero BEFORE the current from source->drain ramps up. Thus the power dissipated per switching event (VxI) is very close to zero (chart below). This is conventionally done using active snubber circuits or software on micro-controllers. In principle, ZVS enables faster switching frequencies without astronomical switching losses.

Hillcrest’s technology includes Zero Voltage Switching algorithms, which can be implemented in a micro-controller, and coupled with next-generation SiC semi-conductors, which are creating an exciting jolt forwards in the power electronics behind practically all of the core areas of the energy transition (TSE research note here).

Hillcrest’s white papers show that its algorithms achieve 30-70% lower switching losses than others using similar semi-conductors, especially at higher switching frequencies (chart below). They are also shown to operate over a wider operating range than existing solutions, and produce a particularly high quality output (low ripple, low harmonics, low EMI) .

Another benefit highlighted is that higher quality power signals should allow for downsizing of other components in the traction inverter; especially the DC link capacitor, which typically comprise 21% of the weight of the inverter, 14% of its cost, and 30% of the failures (chart below). This should be interesting for manufacturers of electric vehicles, and others in wind, solar, batteries, fast-charging, power grids.

The data-file linked below is our Hillcrest technology review. As usual, our goal is to review the company’s patents, and its White Papers, to assess (a) can we understand precisely how the company is achieving a technical breakthrough? (b) can we de-risk that breakthrough and (c) can we find a clear moat around the technology, conferring an edge for the company.

Auto manufacturing: the economics?

sales price of a mass-market automobile

This data-file is a very simple model, aiming to break down the sales price of a typical mass-market automobile. Our numbers are informed by a survey of typical numbers for specific auto-plants in Europe and the US.

In typical times, a vehicle’s cost is estimated around $30k, of which c25% accrues to suppliers, c20% is sales taxes, c20% is dealer costs and logistics, c10% employees, c10% material inputs, c10% O&M, 1% electricity and c5% auto-maker margins. Numbers and calculations are in the data-file.

Amidst energy and industrial shortages, it is likely that the same vehicle could cost closer to $50k, representing c40% inflation, mostly due higher costs of materials and bottlenecks in supply chains.

EV fast charging: opening the electric floodgates?

power electronics for electric vehicle charging

This 14-page note explains the crucial power-electronics in an electric vehicle fast-charging station, running at 150-350kW, to charge up an entire EV in 10-30 minutes. Most important are power-MOSFETs, comprising c5-10% of charger costs. The market trebles by the late 2020s. We explore who benefits?

Power-MOSFETs: leading companies?

Companies making power MOSFETs

Power MOSFETs are an energy transition technology, the building block behind inverters, DC-DC converters, EV drive trains, EV chargers and other renewables-battery interfaces. Hence this data-file is a screen of companies making power MOSFETs, especially new and higher-efficiency devices using Silicon Carbide as the semi-conductor.

This data-file screens companies making power-MOSFETs, especially silicon carbide MOSFETs and underlying materials.

For each case, we have charted the company’s revenues, employee count, market share in MOSFETs, market share in SiC devices, market share in SiC materials, total estimated revenues from SiC and proportionate exposure to SiC.

A 10-line description is provided for each company, covering recent announcements for scaling up their MOSFET businesses, SiC businesses, backwards integration and margin targets.

Covered companies in the data-file include Wolfspeed, Infineon, onsemi, Rohm, STMicroelectronics, Coherent, and more.

Backup tabs in the data-file include data aggregated from technical papers, into the relative efficiencies, costs, temperature performance and other technical data of SiC semi-conductors, especially compared to traditional silicon.

Electric vehicles: chargers of the light brigade?

economics of EV charging stations

This 14-page note compares the economics of EV charging stations with conventional fuel retail stations. They are fundamentally different. Our main question is whether EV chargers will ultimately get over-built, as retailers look to improve their footfall and accelerate the energy transition. This means prospects may be best for charging equipment and component manufacturers.

Electric motors: state of flux?

Axial flux motor technology

Motor innovations are an overlooked enabler for the electrification of transport. This 15-page note explores whether axial flux motors could come to dominate in the future. They promise 2-3x higher power densities, even versus Tesla’s world-leading PMSRMs; and 10-15x higher than clunky industrial AC induction units; while also surpassing c96% efficiencies. This extends the range of EVs and the promise of drones/aerial vehicles.

Axial flux motors: leading companies and products?

Axial flux motor companies

This data-file profiles leading companies and products in the space of axial flux motors, in order to highlight ‘who they are’ and ‘what they do’.

One tab compiles the details of ten leading axial flux motor designs, with an average power density of almost 8kW/kg, which is even higher than the PMSRMs used in the latest Teslas, and around 10x higher than a typical AC induction motor in heavy industry. Other technical parameters of these motors are also compiled.

Leading companies are also profiled later in the data-file, based on reviewing over 1,200 patents, the companies’ size and their recent news flow. The pace of patent activity has been rising at a CAGR of 16% over the past decade, including traditional cap goods, autos and motors companies, plus pure-plays in axial flux motors (see diagram above).

Mine trucks: transport economics?

Mine Truck Economics

There are around 50,000 giant mining trucks in operation globally. The largest examples are around 16m long, 10m wide, 8m high, can carry around 350-450 tons and reach top speeds of 40mph.

This data-file captures the economics of a mine haul truck. A 10% IRR requires a charge of $10/ton of material, if it is transported 100-miles from the mine to processing facility. Assumptions can be stress-tested overleaf.

Fuel consumption is large, around 40bpd, or 0.3mpg, comprising around 30% of total mine truck costs at c$1.5-2/gal diesel prices. Some lower carbon fuels are c5x more expensive, and would thus inflate mined commodity costs.

High utilization rates are also crucial to economics, to defray fixed costs, which are c50% of total costs, as our numbers assume each truck will cover an average of 500 miles per day for c20-25 years.

Copyright: Thunder Said Energy, 2019-2023.