Electric vehicle charging: the economics?

This data-file models the economics of electric vehicle chargers. First, we disaggregate costs of different charger types across materials capex, labor capex, permitting, fees, opex and maintenance. Next we model what fees need to be charged by the charging stations (in c/kWh) in order to earn 10% IRRs.

Economics are most favorable where they can lead to incremental retail purchases and for larger, faster chargers.

Economics are least favorable around multi-family apartments, charging at work and for slower charging speeds.

Nickel, manganese, cobalt: sufficient reserves for the rise of EVs?

This data-file models whether there will be enough nickel, manganese and cobalt, to build the batteries behind the vast rise of electric vehicles embedded in our oil demand forecasts.

Our conclusion is that the outlooks for nickel and manganese are unconcerning, due to strong recent reserve replacement ratios. But the need to ramp up, reduce and recycle cobalt will be a challenge.

You can stress-test the input assumptions in the model, varying the ultimate sales of electric vehicles, other demand growth, recycling rates and reserve replacement ratios.

Proton exchange membrane fuel cells: what challenges?

This data-file reviews fifty patents into proton exchange membrane fuel cells (PEMFCs), filed by leading companies in the space in 2020, in order to understand the key challenges the industry is striving to overcome.

The key focus areas are controlling the temperature, humidity and longevity of hydrogen fuel cells. But unfortunately, we find over half of the proposed solutions are likely to increase end costs.

We remain cautious on the practicalities and the economics of hydrogen fuel cell vehicles (2x most costly than conventional vehicles per km, note here) and hydrogen fuel cells for power generation (10x more costly, note here).

Electric vehicle charging: what challenges?

This data-file tabulates the greatest challenges for charging electric vehicles, based on the recent patent literature, looking across fifty patents filed by leading companies.

Our top three conclusions are that EV charging will require complex algorithms to ensure grid stability, creating an opportunity for big data companies; vehicle-manufacturers are concerned about balancing the convenience of EV charging with the investment costs of charging networks; while interestingly, increasing speed of charging is not a primary focus.

Our conclusions are typed up in the data-file, plus the full back-up of patents from large OEMs, EV-charging specialists, capital goods companies that make components and tech giants, working on optimization algorithms.

Lithium ion batteries for electric vehicles: what costs?

This data-file disaggregates the costs of electric vehicle batteries, which have been reported at $156/kWh in 2019. But how much deflation lies ahead, and is it possible to reach competitiveness with ICEs?

Our breakdown covers c25 categories, including materials (cobalt, lithium, manganese, nickel et al), manufacturing and cell finishing. Detailed estimates are also provided for 10 different cell chemistries, covering NCA, NMC, LFP and others.

Further deflation is expected in manufacturing costs, to help the industry reach cost-competitiveness with ICEs. But it will be counteracted by potential re-inflation for materials, and another more crucial consideration: The industry must eventually strive to earn acceptable profits and returns above mere cash costs.

The ascent of drones?

In 2019, we argued drones would be the single most disruptive technology to gain share in the 2020s, with potential to save over 500MTpa of CO2 emissions, while re-shaping urban consumption, retail and manufacturing (note here).

This data-file aims to tabulate key news flow and data-points around the ascent of drone technologies, across dozens of news stories, running back to 2016. We find an acceleration of activity due to COVID. Full details are overleaf.

Lithium ion batteries for electric vehicles: what challenges?

This data-file tabulates the greatest challenges for lithium ion batteries in electric vehicles, which have been cited in 2020’s patent literature. Specifically, the work contains a sample of 100 patents aiming to overcome these challenges, as filed by companies including Tesla, CATL, GM, GS Yuasa, LG, Nissan, Panasonic, Sanyo, Sumitomo, Toyota, et al.

Our notes and conclusions are spelled out in detail. We find the industry is clearly entering execution mode, and less focused on radical breakthroughs in energy density. CATL and Tesla’s pursuit of a “million mile battery” is substantiated, but includes trade-offs. The patent disclosures also suggest great difficulties in ever achieving a battery-powered semi-truck.

Vehicle costs: cars, SUVs, hybrids, EVs and hydrogen?

This data-file quantifies the cost per mile of vehicle ownership for different categories of vehicles. Our methodology looks across the prices of 1,200 second hand vehicles, to correlate how the re-sale value of each make and model degrades per mile that has accumulated on its odometer (chart above).

Hybrids and basic passenger cars are most economical. Trucks and SUVs are 2x more costly. EVs are another 25% more costly again, and will have lost c60% of their value after 100,000 miles. Hydrogen cars have the highest costs and will have lost over 90% of their value after 100,000 miles (chart below).

Underlying data are shown in the input tab across ten makes and models, to see how the re-sale value of each vehicle degrades with mileage. This may help you appraise what a particular second hand purchase “should” cost (example below) if you are among the many non-drivers considering a vehicle purchase as a result of the COVID crisis.

 

Tesla: where’s the IP?

This data-file compiles all of Tesla’s patents, classifies them across 1,000 patent families, and describes their innovations.

Our conclusion is that Tesla holds less patented IP than rival auto-companies. However, where it has filed patents, it is more focused on pure EV technologies, such as batteries, electric circuitry, electric propulsion and digital features (chart above).

Patent filings since 2019 have focused on big data/digital technologies, solar and improved batteries (including novel electrolyte systems using lithium fluorates, borates and other improved additives).

Energy storage: batteries versus supercapacitors?

Supercapacitors may eclipse lithium ion batteries in the hybridization of transport and industry. Their energy density is improving. Potential CO2 savings could surpass 1bn tons per year. IRRs of 10-50% can be achieved, even prior to CO2 prices. These are our conclusions after reviewing 2,000 Western patents. GE, Siemens, Skeleton and ZapGo are among the leading companies exposed to the theme.