US CO2 and Methane Intensity by Basin

CO2 and methane intensities are tabulated for 300 distinct company positions across 9 distinct basins in this data-file. Using the  data, we can aggregate the total CO2 in (kg/boe) and methane leakage rates (as a percent of natural gas production) across the US’s different basins.

Covered basins include the Permian, Bakken, Marcellus/Utica, Alaska, GoM, Powder River, San Juan, Anadarko basin and DJ basin (chart above).

It is possible to rank the best companies in each basin, using the granular data, to identify industry leaders and laggards (chart below).

Heliogen: concentrated solar breakthrough?

Heliogen has set a new record for concentrated solar power in November 2019, generating >1,000C temperatures from an array of c370 hexagonal mirrors, which are precisely controlled using computer vision. This is almost 2x traditional CSP plants which achieve c560C temperatures.

We have reviewed 21 patents from Heliogen’s predecessor company, eSolar, in order to understand its IP. Not only can it control heliostats more precisely than prior companies, but this allows the heliostats to be down-sized, conferring material cost-savings.

This data-file summarizes the technology, the patents, the costs (in c/kWh and $/mcfe) and the opportunity to decarbonise industrial heat and power generation.

Methane Leaks from Downstream Gas Distribution

This data-file tabulates the methane emissions from downstream gas distribution across 160 US gas networks, which cover 1.1M miles of mains, 61M metered customers and >90% of the country’s retail gas demand.

Downstream US methane leakages average 0.2% by volume, explaining 5.7kg/boe of emissions. Two thirds of these leaks can be attributed to gas mains. Leakages are correlated with the share of sales to smaller customers. And state-owned utilities appear to have 2x higher leakage rates the public companies.

US gas utilities’ performance is screened to assess c80 distinct companies, including: Altagas, Atmos, Centerpoint, CMS, Dominion, DTE, Duke, Edison, National Grid, PG&E, Sempra, Southern Co, Spire, UGI, WEC & Xcel.

CO2 emissions from Permian shale production

This model disaggregates the CO2 emissions of producing shale oil, across 14 different contributors, aggregating across a dozen different models constructed by Thunder Said Energy: such as materials, drilling, fracturing, supply chain, lifting, processing, methane leaks and flaring.

CO2 intensity can also be flexed by changing different input assumptions, such as methane leakage, flaring activity and well productivity; while we will be happy to share underlying models with you, for further sensitivity analysis.

Our ‘idealized shale’ scenario follows in a separate tab, showing how it could be achievable to make Permian shale production a ‘carbon neutral’ resource.

Mitigating methane: what methods?

This data-file screens the methods available to monitor for methane emissions. Notes and metrics are tabulated for Method 21, Optical Gas Imaging, fixed sensors, ground labs, aircrafts, drones and satellites; including advances at the cutting edge of each method.

Emerging screening methods, such as drones and trucks are also scored, based on results from an excellent recent technical trial. The best drones can detect almost all methane leaks >90% faster than traditional methods.

Companies developing next-generation methane-mitigation technologies are screened, including 10 public  companies and 33 private companies. This peer group filed 150 patents in 2018-19. 8 companies seem particularly exciting to us.

Operators are also screened, across the dozen largest Energy Majors, to estimate their methane leaks and broader methane intensity across the supply chain.

US E&Ps turn to ESG?

Of the largest 15 shale E&Ps, the proportion with ESG slides in their quarterly presentations has exploded by 4.5x in the trailing twelve months, from 13% in 3Q18 to 60% in 3Q19.

The progress is tracked in this short data-file, which counts the number of ESG slides published, by company, by quarter; as the industry articulates its carbon credentials in order to help attract capital.

Methane emissions detract from natural gas?

This short model calculates the impact of methane emissions on the CO2/boe of burning natural gas, compared against coal. With methane emissions fully controlled, burning gas is c60% lower-CO2 than burning coal.

However, taking natural gas to cause 120x more warming than CO2 over an immediate timeframe, the crossover (where coal emissions and gas emissions are equivalent) is 4% methane intensity. i.e., if 4-20% of methane is leaked, then the total warming from burning natural gas is equivalent to coal’s.

Carbon Offsets vs Renewable Diesel?

This short model compares different options for decarbonising diesel, either by substituting it with renewable diesel, or by offsetting its CO2 with carbon credits from reforestation.

We conclude that offsetting the CO2 of diesel fuel could cost 60-90% less than purchasing advanced biofuel, at current pricing. Economically justified premia for biofuels are calculated.

Please download the model to interrogate numbers and run your own scenarios. For more information on our input assumptions, please see our biofuels overview data-file.

Gas Gathering: how much CO2 and Methane?

Gas gathering and gas processing are 50% less CO2 intensive than oil refining. Nevertheless, these processes emitted 18kg of CO2e per boe in 2018, hence the gas industry must strive to improve.

Methane matters most, explaining 7kg/boe of the gas industry’s CO2-equivalents, via leaks and fugitive emissions (and this is with 1 kg of methane translated into 25 kg of CO2e). Hence US methane intensity ran at c0.5% in 2018.

The numbers vary widely by geography and by operator, and are quantified in this data-file, after analysing 850 facilities’ EPA disclosures. Very detailed and comparable disclosures are broken out for US gas gathering, to screen for leaders and laggards.

Covered companies include Antero, BP, Denbury, DCP, DTE, Equinor, Equitrans, Energy Transfer Partners, Enlink, Enterprise Product Partners, EOG, ExxonMobil, Kinder Morgan, Oneok, Pioneer, Shell, Targa, Williams.

US Refiners: CO2 cost curve?

Which refiners are least CO2 intensive, and which refiners are most CO2 intensive? This spreadsheet answers the question, by aggregating data from 130 US refineries, based on EPA regulatory disclosures.

The full database contains a granular breakdown, facility-by-facility, showing each refinery, its owner, its capacity, throughput, utilisation rate and CO2 emissions across six categories: combustion, refining, hydrogen, CoGen, methane emissions and NOx (chart below).

Assessed companies include Aramco, BP, Chevron, Citgo, Delek, ExxonMobil, Koch, Hollyfrontier, Marathon, Phillips66, PBF, Shell and Valero.