Inter-correlations between solar assets?

This data-file aggregates granular data from seven solar assets around Western Europe (Netherlands, Germany, Belgium, Switzerland), to understand their volatility and inter-correlation, over a sample week in August-2021.

Across the entire week, the average solar plant generated at 12% of its nominal capacity, the 90th percentile was 40% and the maximum was 75%; which may suggest that the panels have been oversized relative to inverters or MPPT is not fully optimized.

Volatility and inter-correlations are quantified in the data-file, but are generally high. For example, over >500km distances, different solar generators’ 15-min by 15-min output is 60-80% correlated, which is even greater than for offshore wind (data here).

These issues suggest solar can provide a meaningful portion of decarbonizing grids, but surpassing 20% requires back-ups.

Shoals: solar-electronic breakthrough?

Shoals Technologies Group manufactures electrical balance of system solutions for solar energy projects, focused on promoting reliability, safety and ease of installation. The company went public in January-2021, raising $1.9bn in an IPO, which was upsized due to strong demand and valued the overall company above c$5bn.

Our patent review finds a technology moat to help improve solar competitiveness. This includes plug-and-play electrical   connections, guards to secure those connections, accomodating one fuse and more electronics per panel  rather than shared across many panels, and discconnect mechanisms that facilitate maintenance. Full details are in the data-file.

Energy economics: an overview?

This data-file provides an overview of 60 different economic models constructed by Thunder Said Energy, in order to help you put numbers in context.

Specifically, the model provides summary economic ratios from our different models across conventional power, renewables, conventional fuels, lower-carbon fuels, manufacturing processes, infrastructure and nature-based solutions.

For example, EBIT margins range from 3-70%, cash margins range from 4-85% and net margins range from 2-50%, hence you can use the data-file to ballpark what constitutes a “good” margin, sub-sector by sub-sector.

Likewise capital intensity ranges from $300-9,000kWe, $5-7,500/Tpa and $4-125M/kboed. So again, if you are trying to ballpark a cost estimate you can compare it with the estimated costs of other processes.

Mine trucks: transport economics?

There are around 50,000 giant mining trucks in operation globally. The largest examples are around 16m long, 10m wide, 8m high, can carry around 350-450 tons and reach top speeds of 40mph.

This data-file captures the economics of a mine haul truck. A 10% IRR requires a charge of $10/ton of material, if it is transported 100-miles from the mine to processing facility. Assumptions can be stress-tested overleaf.

Fuel consumption is large, around 40bpd, or 0.3mpg, comprising around 30% of total mine truck costs at c$1.5-2/gal diesel prices. Some lower carbon fuels are c5x more expensive, and would  thus inflate mined commodity costs.

High utilization rates are also crucial to economics, to defray fixed costs, which are c50% of total costs, as our numbers assume each truck will cover an average of 500 miles per day for c20-25 years.

The Top 40 Private Companies for an Energy Transition

This data-file presents the ‘top 40’ private companies out of several hundred that have crossed our screens since the inception of Thunder Said Energy, looking back across all of our research.

For each company, we have used apples-to-apples criteria to score  economics, technical readiness, technical edge, decarbonization credentials and our own depth of analysis.

The data-file also contains a short, two-line description follows for each company, plus links to our wider research, which will outline each opportunity in detail.

Tree crops: financial and agricultural yields?

This data-file compiles the estimated calorific and financial yields of tree crops versus conventional crops such as corn and soybean. There is strong economic potential to produce food while absorbing CO2 in trees,  although calorific  yields are 50-90% lower.

On average, conventional agricultural will yield high calorific yields of 5-15M kcal and moderate value of $1,000 per acre, after decades of agricultural improvements.

Heavily ‘farmed’ tree crops, such as almond and pistachio will have calorific yields in the low end of this range, but generate 5-10x more value per acre.

Less intensively farmed tree crops will produce 1-2M kcal per acre, but their value is nevertheless around 2x higher than conventional agriculture.

Species-by-species considerations are discussed in the data-file.

Copper: leading producers?

This data-file is a screen of the world’s largest copper miners and producers, covering 16 companies that produce half of all global output.

We have tabulated each company’s size, type, headcount, patent count, production, reserves, RP ratio, relative exposure, key assets and other notes.

The average company produces around 0.8MTpa of copper, has a 30-year reserve life, and derives 30% of its EBITDA from copper.

Commercial aviation: air travel economics?

This data-file estimates the economics of a commercial airliner, over the course of its life: i.e., what ticket price must be charged to earn a 10% IRR after covering the capex costs of the plane, fuel costs, crew, maintenance and airport and air traffic charges.

We conclude that the single largest determinants of economics are the utilization and load factor of the plane. Fuel and maintenance are likely to be joint second.

The IEA’s proposal for a $250/ton CO2 price in the developed world would likely increase average ticket prices by 30%. But this would most likely end up as an outright tax on travel, as 2-4x higher CO2 prices again would berequired to incentivize the use of alternative, low carbon aviation fuels.

Container freight: shipping economics?

This data-file models the total costs of shipping a container c10,000 nautical miles from China to the West.

Specifically, we calculate what freight rate is required to earn a 10% IRR on constructing a new 20,000 TEU container ship, based on the capital costs, fuel costs and other operating costs.

New emerging fuels can lower the CO2 intensity of shipping from their baseline of 0.15kg/TEU-mile by 60-90%, however this may come at the cost of re-inflating freight costs by 30%-3x.

Economics can be stress-tested in the data-file, varying vessel size, route length, fuel economy, utilization and other cost lines.

Integrated gas and renewable power?

This data-file considers how to supply 100MWe and 1,000GWH pa of energy to a mid-sized consumer: reliably, at a low-cost and with zero net CO2 emissions. We think this is possible at a delivered power price below 10c/kWh, which is highly competitive.

The model captures the costs, gross CO2 intensity and nature-based offset requirements from a mixture of wind, solar, CHPs and gas turbines.

Following this model could create great potential for an integrated gas and power company, while supplying a complete, zero-carbon energy solution to consumers in the energy transition.