Logo image

the research consultancy for energy technologies

Search results for: โ€œsilicaโ€

  • Silica producers: screen of leading companies?

    Silica producers: screen of leading companies?

    Highly pure silica sand, with well over 95% SiO2 content and less than 0.6% iron oxide, is an important resource used in making glass, metal foundries, “proppant” for hydraulic fracturing in the oil and gas industry and making high-grade silicon (for chips and PV silicon). The market is 350MTpa. This data-file is a screen of…

    Read more

  • Commodity prices: metals, materials and chemicals?

    Commodity prices: metals, materials and chemicals?

    Annual commodity prices are tabulated in this database for 70 materials commodities; covering steel prices, other metal prices, chemicals prices, polymer prices, all with data going back to 2012. 2022 was a record year for commodities. The average material commodity traded 25% above its 10-year average and 60% of all material commodities made ten-year highs.

    Read more

  • Global polysilicon production capacity?

    Global polysilicon production capacity?

    Polysilicon is a highly pure, crystalline silicon material, used predominantly for photovoltaic solar, and also for ‘chips’ in the electronics industry. Global polysilicon capacity is estimated to reach 1.65MTpa in 2023, and global polysilicon production surpasses 1MTpa in 2023. China now dominates the industry, approaching 90% of all global capacity.

    Read more

  • Silicon carbide: production costs?

    Silicon carbide: production costs?

    This data-file captures the costs of producing different grades of silicon carbide: from materials grade SiC ($1,500/ton marginal cost, 5 tons/ton CO2 intensity) through to SiC wafers that are used in the electronics industry ($30M/ton, 200 tons/ton?). SiC semiconductor remains opaque.

    Read more

  • Energy intensity of fiber optic cables?

    Energy intensity of fiber optic cables?

    What is the energy intensity of fiber optic cables? Our best estimate is that moving each GB of internet traffic through the fixed network requires 40Wh/GB of energy, across 20 hops, spanning 800km and requiring an average of 0.05 Wh/GB/km. Generally, long-distance transmission is 1-2 orders of magnitude more energy efficient than short-distance.

    Read more

  • Solvay: lithium ion battery binders and additives?

    Solvay: lithium ion battery binders and additives?

    Solvay is a chemicals company with growing exposure to battery materials, especially the PVDF binders that hold together active materials in the electrodes. But also increasingly in electrolyte solvents, salts and additives. Interestingly, our patent review finds optimizations of this overall system can improve the longevity and energy density of batteries, which may also lead…

    Read more

  • Market concentration by industry in the energy transition?

    Market concentration by industry in the energy transition?

    What is the market concentration by industry in energy, mining, materials, semiconductors, capital goods and other sectors that matter in the energy transition? The top five firms tend to control 45% of their respective markets, yielding a โ€˜Herfindahl Hirschman Indexโ€™ (HHI) of 700.

    Read more

  • Bill of materials: electronic devices and data-centers?

    Bill of materials: electronic devices and data-centers?

    Electronic devices are changing the world, from portable electronics to AI data centers. Hence what materials are used in electronic devices, as percentage of mass, and in kg/kW terms? This data-file tabualates the bill of materials, for different devices, across different studies.

    Read more

  • Semiconductors: outlook in energy transition?

    Semiconductors: outlook in energy transition?

    Semiconductors are an energy technology. And they are transforming the future global energy complex, across AI, solar, electric vehicles, LEDs and other new energies. This short article summarizes our outlook for semiconductors in energy transition, and resultant opportunities across our work.

    Read more

  • Perovskite solar: beyond silicon?

    Perovskite solar: beyond silicon?

    Will the next chapter of solarโ€™s ascent come from perovskite-tandem cells, followed by perovskite-on-perovskites? This 18-page report finds more momentum than we expected. There is potential for 30% cost deflation, new solar applications (in buildings/vehicles), and a disruption of PV silicon?

    Read more

Content by Category

Show More