Carbon Offsets vs Renewable Diesel?

This short model compares different options for decarbonising diesel, either by substituting it with renewable diesel, or by offsetting its CO2 with carbon credits from reforestation.

We conclude that offsetting the CO2 of diesel fuel could cost 60-90% less than purchasing advanced biofuel, at current pricing. Economically justified premia for biofuels are calculated.

Please download the model to interrogate numbers and run your own scenarios. For more information on our input assumptions, please see our biofuels overview data-file.

Power from Shore: the economics?

We model the economics of powering an oil platform from shore, using cheap renewable power instead of traditional gas turbines. This can lower upstream CO2 emissions by 5-15kg/bbl, or on average, around 70%; for a base case cost of $50-100/ton.

Our numbers are derived from reviewing technical papers, plus ten prior projects (mostly in Norway), which are tabulated in the data-file, including capex figures (in $M and $/W) where disclosed.

The costs of CO2 abatement can be flexed by varying inputs to the model, such as project size, gas prices, power prices and carbon prices.

 

Carbon Credentials drive Capital Costs?

Lower carbon oil and gas may be increasingly valued by investors, earning higher multiples and lower costs of capital. This is the conclusion from our recent investor survey, linked here.

c80% now find it harder to invest in oil and gas, because of the need to decarbonise energy. However, 90% see lower carbon barrels as part of the solution. Hence 80% stated that lower capital costs could be warranted for these lower carbon producers.

Higher carbon barrels are currently being punished with c6% higher costs of capital, on average, compared with more typical projects. However, lower carbon barrels are not yet being rewarded, ascribed just 2% lower costs of capital, according to the survey data.

We will be happy to send a free copy of the data-file to all those that complete the survey, otherwise, it can be purchased below.

CO2 Intensity of Oilfield Supply Chains

This data-file calculates the CO2 intensity of oilfield supply chains, across ten different resources, as materials are transported to drilling rigs, frac crews, production platforms and well pads.

Different resources can be ranked on this measure of supply chain CO2-intensity: such as  the Permian, the Gulf of Mexico, offshore Norway, Guyana, pre-salt Brazil and Middle East onshore production (chart above).

Underlying the calculations are modeling assumptions, for both onshore and offshore operations, each based on c15 input variables. You can change the inputs to run your own scenarios, or test the most effective ways to lower supply-chain CO2.

Permian CO2 Emissions by Producer

This data-file tabulates Permian CO2 intensity based on regulatory disclosures from 20 of the leading producers to the EPA in 2018. Hence we can  calculate the basin’s upstream emissions, in tons and in kg/boe.

The data are fully disaggregated by company, across the 20 largest Permian E&Ps, Majors and independents; and across 18 different categories, such as combustion, flaring, venting, pneumatics, storage tanks and methane leaks.

A positive is that CO2 intensity is -52% correlated with operator production volumes, which suggests CO2 intensity can be reduced over time, as the industry grows and consolidates into the hands of larger companies.

Portfolio Construction for Energy Majors?

This data-model calculates risk-adjusted returns available for different portfolio weightings in the energy sector, as companies diversify across upstream, downstream, chemicals, corporate, renewables and CCS investments. The methodology is a mean-variance optimisation based on modern portfolio theory.

Should Oil Majors become Renewable Energy Majors? Our model indicates returns would decrease by allocating more capital to renewables, but certain renewable allocations can nevertheless increase risk-adjusted returns, as quantified using Sharpe Ratios.

Please download the model to test the impacts of flexing portfolio weightings; either at our own risks, returns and diversification benefits; or under your own assumptions which can be tweaked in the model.

CO2 Intensity of Drilling Oil Wells?

This data-file estimates the CO2 intensity of drilling oil wells, in our usual units of kg/boe. The calculations are conducted bottom-up, based on fuel consumption at onshore, offshore and deep-water rigs; plus drilling days and typical resource volumes per well.

Drilling wells is not the largest portion of the oil industry’s total CO2 intensity. Nevertheless there is a 50x spread between the best and worst barrels, which is wider than other categories we have screened.

Prolific fields will have the lowest drilling-CO2 intensities, particularly where they are onshore (e.g., Saudi Arabia). Infill wells at mature deepwater fields may have the highest drilling-CO2.

Carbon Costs of IMO 2020?

CO2 intensity of oil refineries could rise by 20% due to IMO 2020 regulations, according to the estimates in this data-file, if a refinery chooses to convert all its high-sulphur fuel oil into low-sulphur diesel.

The drivers are an extra stage of cracking, plus higher-temperature hydrocracking and hydrotreating, which will also have the knock-on consequence of increasing hydrogen demands.

Higher CO2 intensity conflicts with the industry’s aim of lowering its net emissions, and a 20% increase would effectively undo 30-years of prior efficiency gains in the refining industry.

Upgrading Catalysts: lower refinery temperatures and pressures?

Catalysts matter for refinery energy and CO2 intensity, as is shown in this data-file: It tabulates temperature and pressure conditions, disclosed for different refinery units, based on over 50 patents from leading energy Majors.

The average refinery process takes place at 450C. But variability is high. Hence our data-file explains the variations as a function of the different catalyst compositions, being pioneered by the different companies.

Combining all the best-in-class new catalysts in the datafile, we think the average refinery could save 5kg/bbl of CO2 intensity: across hydrocracking, FCCs, steam cracking, coking, dewaxing, hydrotreating, alkylation and reforming.

US Refining: energy and CO2 intensity

This data-file tabulates the energy intensity and resultant CO2 intensity of the US refining industry, source by source, year by year, back to 1986.

Emissions of refining a barrel of crude in the US have fallen at a 0.5% CAGR over the past c30-years, from 36kg/boe in 1986 to 31kg/boe in 2018.

US refineries are increasingly fueled by natural gas and merchant steam, while own use of oil, coal and oil products have been phased out.