Solvay: lithium ion battery binders and additives?

Solvay is a chemicals company with growing exposure to battery materials, especially the PVDF binders that hold together active materials in the electrodes. But also increasingly in electrolyte solvents, salts and additives. Interestingly, our patent review finds optimizations of this overall system can improve the longevity and energy density of batteries, which may also lead to consolidation across the battery supply chain?

Solvay is a chemicals company, listed in Brussels and Paris, with history dating back to 1863, 22,000 employees, €13.4bn of revenues in 2022, 24% EBITDA margin and €11bn of market cap at the time of writing in September-2023.

Its Materials segment produces specialty polymers and composites for light-weighting vehicles and aerospace parts; its Chemicals business produces soda-ash, peroxides, silica, et al; and its Solutions business produces specialty chemicals, aromas, coatings, Rare Earths, mining solutions and battery recycling.

For the energy transition, Solvay is a leader producing of battery binders, which are fluorinated polymers, mainly PVDF, that physically bind the metal particles together in a battery cathode and the graphite particles together in a battery anode. Solvay has the broadest PVDF offering in the battery materials space, spanning across both suspension- and emulsion technologies. And it is investing to expand capacity in France, the US and China. We found some interesting battery binder innovations in the patents.

However what surprised us most about reviewing Solvay’s patents was that there was 2x more focus on developing battery electrolytes and additives than on improving binders. Typically, the electrolyte of a lithium ion battery consists of LiPF6, an ionic salt, which is dissolved in ethylene carbonate, dimethyl carbonate or vinylene carbonate. However, this also places a limit on the battery energy density (and by extension, materials intensity), as most of these solvents start decomposing at 4.2-4.4V. For more details, please see our deep-dive report into battery degradation.

The patents strongly imply that electrodes, binders, electrolyte solvents, salts and additives form an ‘overall system’ where all of the components interact. Hence as the battery industry focuses upon lower degradation and higher voltage (more energy dense) battery chemistries, we wonder if this will drive consolidation across the supply chain, where battery manufacturers will want to buy all of these mutually interactinve materials as part of an overall offering from a single integrated supplier rather producing them separately?

Overall Solvay’s battery patent library is complex, with literally hundreds of different electrolyte salts, solvents and additives and blended together in cocktails. Over 90% of the patents provided specific details of specific compositions, aimed at improving cell longevity, or voltage, or efficiency (charts below).

Back in the world of battery binders, there is also a side focus on developing lithium metal batteries, or solid state batteries. Note that a typical lithium ion battery uses fluorinated polymer binders in its electrodes, but a solid state battery would use fluorinated polymer binders in its electrolyte too.

Please download the data-file for further conclusions from our Solvay battery technology review, and conclusions on whether the company has a moat around its patents.

Energy Recovery Inc: pressure exchanger technology?

pressure exchanger

A pressure exchanger transfers energy from a high-pressure fluid stream to a low-pressure fluid stream, and can save up to 60% input energy. Energy Recovery Inc is a leading provider of pressure exchangers, especially for the desalination industry, and increasingly for refrigeration, air conditioners, heat pump and industrial applications. Our technology review finds a strong patent library and moat around Energy Recovery’s pressure exchange technology.

Energy Recovery Inc was founded in 1992, it is headquartered in California, listed on NASDAQ, with 250 employees and $1.3bn of market cap at the time of writing. Financial performance in 2022 yielded $126M revenues, 70% gross margin, 20% operating margin.

The PX Pressure Exchanger is Energy Recovery Inc’s core product. It transfers pressure energy from a high pressure fluid stream to a low pressure fluid stream at 98% efficiency, yielding up to 60% energy savings in specific contexts. The company aims to grow revenues as much as 5x in the next half-decade due to increasing need for global energy efficiency.

Pascal’s Law states that bringing a high pressure and low pressure fluid into contact will result in their pressures equalizing with minimal mixing. This principle is used in pressure exchangers. As a rotor rotates, it brings a low pressure fluid A into contact with a high pressure fluid B, equilibrating their pressure, then discharging fluid A at higher pressure.

For example in a desalination plant, incoming seawater at 1-3 bar of pressure is pressurized up to 40-80 bar using pumps, pushing it across a membrane that is porous to water but not to dissolved salts. Energy remains in this 40-80 bar concentrate stream. It is better to recover this energy than blast it back into the Ocean! Thus pressure exchange can lower the energy requirements of desalination by as much as 60%.

Energy Recovery Inc’s patents note that rotary pressure exchangers were first invented in the 1960s, progressed in the 1990s, but prior to its own designs, the company argues that no one had designed efficient and reliable systems, which could run without an external motor to rotate them, achieved by optimizing the shape of the flow channels.

Our technology review found 65 patent families from Energy Recovery Inc. Overall, we think the patent library is high-quality and the company will retain a moat and leadership in the pressure exchange market, based on its patents and historical experience. Although some early patents are coming up to expiry. Details are in the data-file.

Desalination has been Energy Recovery’s core market historically. However new markets are emerging, from cryogenic cycles through to applications focused on shale (although the latter requires avoiding the corrosive impacts of sand and debris in fluid streams).

pressure exchanger
End markets for pressure recovery based on patents filed by Energy Recovery Inc.

Refrigeration, air conditioning and heat pumps are seen as a growing source of demand. One patent notes that regulation is increasingly phasing out HFCs that can have 13,000x higher GWPs than CO2, and these systems use CO2 as the refrigerant instead. However CO2 based refrigeration cycles have maximum pressures of 1,500 psi or greater, compared to HFC/CFC systems at 200-300psi. This makes the energy savings from pressure exchange increasingly important, siphoning away a portion of the evaporated refrigerant and re-pressurizing it using high-pressure refrigerant downstream of the heat rejection stage, before the expansion valve stage.

TSE Patent Assessments: a summary?

new technologies for the energy transition

New technologies for the energy transition range across renewables, next-gen nuclear (fission and fusion), next-gen materials, EV charging, battery designs, CCS technologies,  electronics, recycling, vehicles, hydrogen technologies and advanced bio-fuels. But which companies and technologies can we de-risk?

One way to appraise new technologies for the energy transition is to lock yourself in a room with a stack of patents from publicly available patent databases, read the patents, and then score them all on an apples-to-apples framework.

Our technology assessment framework is derived from 15-years experience evaluating energy technologies, from the best of the best world-changing technologies, to companies that ultimately turned out to have over-promised. The framework includes five areas:

(1) Specific problems. We find it easier to de-risk patents that pinpoint specific problems that have hampered others, and set about to solve these problems.

(2) Specific solutions. We find it easier to de-risk patents that pose specific solutions, whereas it is harder to de-risk technologies that are more vague.

(3) Intelligibility. We find it easier to de-risk patents that explain why their inventions work, often including empirical data and underlying scientific theory.

(4) Focused. We find it easier to de-risk patents that all point towards commercializing a common invention, and different aspects of that invention. Conversely, patenting 10 totally different solutions might suggest that a company has not yet honed in upon a final product.

(5) Manufacturing details. We find it easier to de-risk patents that explain how they plan to manufacture the inventions in question. Sometimes, very specific details can be given here. Otherwise, it may suggest the invention is still at the ‘science stage’.

The purpose of this data-file is to aggregate all of our patent assessments in a single reference file, so different companies’ scores can be compared and contrasted. The average score in our patent assessment framework is 3.5 out of 5.0, although there is wide variability in each category.

In each case, we have tabulated the scores we ascribed each company on our five different screening criteria, metrics on the companies’ size and technical readiness and a short descripton of our conclusion. You can also view all of our individual patent assessments chronologically.

Plug power: green hydrogen breakthroughs?

Plug Power technology review

Our Plug Power technology review is drawn from the company’s recent patent filings, which offer some of the most detailed disclosures we have ever seen into the manufacturing of PEM electrolysers and fuel cells, underlying catalyst materials, membranes and their manufacturing. One patent seems like a breakthrough. Other patents candidly presented challenges for scaling up green hydrogen and raised questions for us.

Plug Power is a green hydrogen company, founded in 1997, headquartered in New York, with 3,350 employees and c$5bn market cap in mid-2023.

Plug Power is aiming to scale up as a world-leading supplier for $20bn pa of equipment and services across the end-to-end green hydrogen ecosystem by 2030: from electrolysers, to logistics, to energy generation in fuel cells, and niche applications such as forklift trucks (where it has an incumbent position, underpinning c30% of 2023’s revenue targets).

For an overview of how a Proton Exchange Membrane electrolyser works, we have written a short article here. We have not been able to de-risk much green hydrogen in our roadmap to net zero, due to challenges of cost, efficiency, degradation and practicality, as catalogued here.

But on the other hand, Plug Power’s share price has declined by 85% from its 2021 peak, and the purpose of our patent reviews is to stress test our pre-existing conclusions, to see what we could be missing.

Overall the patent library was very broad ranging (chart below), and raised some question marks for us around where the ‘focus’ and ‘moat’ really are in the business. More discussion in the data-file.

Plug Power technology review
Recent patents filed by Plug Power reange across electrolyser, fuel cells, hydrogen logistics, vehicles and balance of plant

Half a dozen recent patents may offer some support to Plug’s mass manufacturing ambitions. Some of these patents contain the most detail we have ever seen on how electrolyser membranes are manufactured, how anode catalysts are synthesized, materials used in different components of a fuel cell stack, and where the pinch points currently are in manufacturing.

The most exciting Plug patent that crossed our screen during this review discusses a ‘dry’ manufacturing process for PEM electrolyser membranes, unlocking lower uses of precious metals (especially platinum) and thinner membranes at higher temperatures, which in turn could improve output and efficiency, and thus deflate electrolyser costs (details in the data-file).

Plug Power technology review

Generally the patents did not contain the same focus on avoiding degradation, as for example, the recent patent library from Bloom Energy.

Further details and conclusions that stood out to us from our Plug Power Technology Review are available in the data-file.

MIRALON: turquoise hydrogen breakthrough?

MIRALON technology

MIRALON is an advanced material, being commercialized by Huntsman, purifying carbon nanotubes from the pyrolysis of methane and also yielding turquoise hydrogen. The material has multiple uses in energy transition. This data-file reviews the MIRALON technology, patents, and a strong moat. Our base case model sees 15% IRRs if Huntsman reaches a medium-term target of bringing MIRALON costs down to $10/kg.

“When we succeed at the kiloton scale, MIRALON will be a name that everyone knows”. This comment was made on a recent Huntsman podcast, describing a novel technology for pyrolysing methane, producing a carbon nanotube-based material (MIRALON) and a byproduct stream of turquoise hydrogen.

This data-file is our MIRALON technology review, based on assessing c45 patent families going back to 2004 and continuing through 2023. In our view, there are clear process innovations behind MIRALON, including methods for controlling the methane pyrolysis reaction, purifying the carbon nanotube product and regenerating the catalyst.

MIRALON fibers are 1mm long, 3-15nm wide, 25x stronger than steel, with similar performance characteristics to carbon fiber (similar strength, higher flexibility, but conductive and dissipating static charges) and other advanced materials.

Commercialization. A 1Tpa micro-plant has been running in Merrimack, New Hampshire in 2021. A 30Tpa pilot plant is being constructed in Texas in 2023. And a multi-kTpa scale reactor will follow. MIRALON was already used in the Juno space mission, while future applications are seen in battery binders, composites, electric vehicles, steel and cement.

Clean hydrogen? Huntsman and ARPA-E have said that CO2 intensity of the resultant hydrogen from the MIRALON process will be 90% below SMR hydrogen (i.e., below 1 ton/ton), which should open up access to $1/kg of 45V incentives under the IRA. Future formulations derived from gas that would otherwise have been flared, landfill gas or biogas could be deemed carbon negative.

Economics. We have updated our turquoise hydrogen models with a tab estimating the costs of the MIRALON process (chart below). Our base case sees 15% IRRs if Huntsman reaches its targets of deflating costs to $10/kg including $1/kg hydrogen and $1/kg IRA incentives. You can stress test inputs, outputs and pricing in our turquoise hydrogen model.

MIRALON technology
Economic costs of producing MIRALON

Huntsman is a chemicals company, headquartered in Texas, which IPO’ed in 2005, operates 70 production facilities in 30 countries, generated $8.4bn of revenues in 2022 and $1.2bn pa of adjusted EBITDA. The company has featured in our research into polyurethanes, carbon fiber, resins and niche mining chemistries.

Our conclusions on the MIRALON technology, the moat around the patents, the key process innovations and the remaining challenges are in this data-file linked below.

Bloom Energy: solid oxide fuel cell technology?

Bloom Energy fuel cell technology

This data-file reviews Bloom Energy’s solid oxide fuel cell technology. What surprised us most was a particularly candid overview of the degradation pathways of solid oxide fuel cells, a focus on improving the longevity of fuel cells, albeit this sometimes seems to be via heavy uses of Rare Earth metals, and increasing complexity. The specificity of the patents does suggest a moat around Bloom Energy fuel cell technology.

Bloom Energy is a leading manufacturer of solid oxide fuel cells, founded in 2001, headquartered in San Jose, California with 1,700 employees, $1.2bn pa of revenues and $3.1bn market cap at the time of this patent assessment in August-2023. Fuel cells matter as we see an increasing need for clean, small-scale generation in the energy transition (note here).

How does a solid oxide fuel cell work? A solid oxide fuel cell draws in air at the cathode, where oxygen ‘gains electrons’ and reduces to yield oxide ions. These oxide ions pass through the electrolyte of the cell towards the anode. At the anode, a fuel oxidizes, surrendering electrons to complete the electrical circuit, then reacts with oxide ions.

What materials are used in solid oxide fuel cells? Electrolytes for solid oxide fuel cells tend to involve stabilized zirconias, such as yttria-stabilized zirconia (YSZ) although Bloom also uses scandia-stabilized zirconia (SSZ or ScSZ). The anode is commonly made of nickel-YSZ cermet. The cathode is often Lanthanum Strontium Manganite (LSM) (or similar). And the metallic interconnects between adjacent cells in a fuel cell stack tend to comprise high-grade chromium alloys.

Why are solid oxide fuel cells so hot? One of Bloom Energy’s patents notes the importance of cubic SSZ as an electrolyte. However, below 580C, this material undergoes a cubic-to-rhombohedral phase transition. Fuel cells run at 650-850C because these high temperatures are needed to open up crystalline electrolyte configurations that enable oxygen permeability.

What are the costs of fuel cells? Capex costs of fuel cells are a challenge, modeled here and here, and Bloom has disclosed production costs in the range of $2,500-4,000/kW from 2017 to 2023 (margins come on top). Materials are a key reason for high costs. Especially scandium. Bloom Energy is sometimes quoted as being the largest scandium consumer in the world (examples here and here). Scandia costs have ranged from $1,000-5,000/kg. Other Rare Earths mentioned in Bloom’s patents include Lanthanum, Yttrium, Cerium, Ytterbium, Samarium and Gadolinium.

What degradation rates for fuel cells? The other key challenge for fuel cells is longevity. We have tracked 160 historical fuel cell deployments in the US (data here), which have tended to see their output decline by 5% per year on average, and most have been retired after an average of c10-12 years.

Does Bloom Energy’s technology help to avoid degradation? The purpose of this data-file is to review patents filed by Bloom Energy, for explanations of why solid oxide fuel cells degrade, and what technology has been developed to address this. The patents we reviewed give very good, clear and candid details into degradation drivers. A table in the data-file explains each one, and how Bloom’s patents address it.

Bloom Energy fuel cell technology
Reasons for solid oxide fuel cell degradation considered in Bloom Energy patentes

The analysis does, however, raise an important question about the trajectory of future fuel cell costs, which is also discussed in the data-file.

Does Bloom Energy have an edge in solid oxide fuel cell technology? The data-file also assessed Bloom’s patents using our usual framework. Generally, the patents are specific, high-quality, and make it unlikely that any other SOFC producer will be able to encroach about Bloom’s IP. Some useful details are disclosed over materials and manufacturing methods. Although we also have an observation about focus shifting.

Newlight AirCarbon: bioplastics breakthrough?

Newlight is a private company, founded in 2003, based in California, aiming to convert (bio-)methane and air into polyhydroxybutyrate (PHB), a type of polyhydroxyalkanoate (PHA), a biodegradable bio-plastic which is marketed as AirCarbon. The product is said to be carbon negative, biodegradable, strong, “never soggy”, dishwasher safe. Our AirCarbon technology review found some good underlying innovations, but was unable to de-risk cost and capex aspirations.

Global plastic demand likely rises from 470MTpa in 2022 to almost 800MTpa by 2050 (model here). Biodegradable bioplastics are a particularly fast-growing segment of the market (overview here).

Hence this data-file presents our conclusions from reviewing patents filed by Newlight, a private company that is commercializing AirCarbon, a biodegradable bioplastic, polyhydroxybutyrate, which is a type of polyhydroxyalkanoate.

What is PHB? Polyhydroxybutyrate is a type of bioplastic produced by micro-organisms (especially methane-consuming bacteria), in response to physiological stress, as a form of energy storage when nutrients are scarce.

Newlight is already delivering AirCarbon to brands such as Nike, Target, Shake Shack, US Foods, H&M, Ben & Jerrys, and hotel chains, from its Eagle 3 demonstration plant, which produced 60M “units” in 2022 (although this might imply relatively small volumes, of around 300Tpa, if we assume a mix of 0.5 gram straws and 10 gram cutlery items?).

Newlight’s goal through 2025+ is to scale up production into the 10s and 100s of kTpa, and displace synthetic plastics, especially in the $140bn pa foodware market, $30bn pa fashion products market, $64bn pa diaper/personal care market and automotive industries.

Does Newlight have a breakthrough technology for PHB production? Producing PHB from methane is complex with over 10 different processing stages. The patents focus particularly upon one stage, which may be a rate limiting stage, enhancing the production of one out of two possible variants of an enzyme. Details, numbers and yields have been gleaned from reviewing Newlight’s patents and are noted in the data-file.

Is PHB carbon negative? Reading between the lines of its patents, we think methane is most likely to be sourced from landfill gas. And the process screens as carbon negative relative to a baseline alternative where the landfill gas or methane was simply vented to the atmosphere. In our view, this is not strictly ‘carbon negative’, but may be ‘Scope 4 negative‘.

What does PHB cost? Attempts to commercialize PHB bioplastics go back to ICI in the 1980s, but have struggled to compete economically. PHAs on the market today tend to have a cost of $2.5 – 6/kg, versus synthetic plastics closer to $1-1.5/kg.

What are the capex costs of producing bioplastics? We would typically assume $1,300/Tpa for an ethane cracker, $1,500/Tpa for an integrated crude to chemicals plant, but think bioplastics plant capex will be in the range of $10,000-50,000/Tpa.

Can we de-risk a breakthrough in our AirCarbon technology review? The purpose of our patent reviews is to use an apples-to-apples framework, to assess whether we can de-risk technologies in our roadmap to net zero. We were not entirely able to de-risk a widespread breakthrough in our AirCarbon technology review, for reasons noted in the data-file.

AirJoule: Metal Organic Framework HVAC breakthrough?

Montana Technologies is developing AirJoule, an HVAC technology that uses metal organic frameworks, to lower the energy costs of air conditioning by 50-75%. The company is going public via SPAC and targeting first revenues in 2024. Our AirJoule technology review finds strong rationale for next-gen sorbents in cooling, good details in Montana’s patents, and challenges that decision-makers may wish to explore further.

The global HVAC market is worth $355bn per year, as air conditioning consumes 2,000 TWH per year, or 7% of all global electricity (note here).

Each one of the world’s 1.7bn vehicles also has an in-built air conditioner, and in hot/congested conditions, the AC can sap 70% of the range of an electric vehicle.

Typical air conditioners have a coefficient of performance (COP) of 2.5-3.5x, which means that each kWh of electricity inputs will deliver 2.5-3.5 kWh-th of cooling energy.

Cooling energy, in turn, is used to reject heat from air (about one-third of the total) and to reject heat from the inevitable condensation of water, as air cools down (about two-third of the total). To re-iterate: (a) cooler air can hold less water; (b) hence some water will condense as air is cooled; (c) condensation of water releases energy (called the latent heat of vaporization, and running at 41 kJ/mol, or 640 Wh/liter); and (d) this adds to the cooling load that the air conditioner needs to provide; (e) by a factor of 1-2x more than the cooling load needed to cool down the air in the first place (called the specific heat of air, or 1.0 kJ/kg-K). For more details, please see our overview of air conditioning energy demand.

Metal Organic Frameworks are a type of sorbent with a high surface area, able to adsorb water from air. To re-release that water, a vacuum pump can be used to lower the pressure (chart below). Effectively this is a swing adsorption process rather than a cryogenic process.

How does AirJoule technology work? This data-file pieces together details from Montana’s disclosures and patent filings. In particular, the work covers five core patents describing a Latent Energy Harvesting System, using Metal Organic Frameworks to adsorb and re-vaporize atmospheric water; test stable MOFs, and novel methods for manufacturing those MOFs.

What COP for AirJoule? After reflecting the loads of the vacuum pump, other fans and blowers, heat transfer from an adsorption chamber to a desorbtion chamber, and auxiliary loads, AirJoule is targeting a total electricity use of 60-90 Wh/liter of water. Hence if water is adsorbed, then desorbed, then misted, it will absorb 640Wh/liter as it re-vaporizes (see above). Divide 640Wh/liter by 60-90Wh/liter, and you derive a coefficient of performance of 7-10x. Or in other words, the energy consumption will be 50-75% below a typical air conditioner. More details are in the data-file.

What are the key challenges for AirJoule technology? We see five thematic challenges for using MOFs and sorbents in cooling systems, and two specific challenges based on reviewing Montana’s patents.

Overall, we think there is very strong potential for next-gen sorbents, and metal organic frameworks, across cooling and other industrial processes, as described in our recent research note here. Key conclusions into Montana’s technology are in our AirJoule technology review below.

Alterra Energy: technology review?

Alterra Energy technology

Alterra Energy built the US’s first larger-scale plastic pyrolysis facility, in Akron, Ohio, and has steadily been refining its plastic recycling technology. The company recently signed license agreements with Neste and Freepoint. Alterra’s technology is a continuous plastic pyrolysis reactor, with seven discrete stages, using scavengers to remove contaminants, and patented hardware to minimize fouling and devolatilize chars.

Alterra Energy is a private company, headquartered in Ohio, which has been developing thermochemical plastic recycling technology since at least 2009.

The company built the US’s first larger-scale plastic pyrolysis plant in Akron, Ohio, at 60Tpd (23kTpa), starting up in 2017, stress-tested in 2018-19, and fully commissioned in 2020, converting 65-75% of hard-to-recycle mixed plastic waste into 115kbbls of oil fractions (PyOil), chemical feedstocks and waxes.

Alterra now aims to license its plastic recycling technology to large international companies, to generate licensing fees and revenues.

Plastic pyrolysis is a thematically exciting space, which we have been following since the early days of Thunder Said Energy in 2018 (note here), eliminating landfilling of hard-to-recycle plastics and denting long-term oil demand by multi-Mbpd.

However, progressing this chemical technology to commercial scale has been challenging (note here). Two thirds of the companies in next-generation plastic recycling have encountered setbacks or slow progress. And most recently, a select few leaders have risen to the top of our screen. Alterra is amongst them.

Neste Energy has now trialled the technology in Finland and plans to build plants at Vlissingen, Netherlands (55kTpa) and Porvoo, Finland, early steps in a plan to process 1MTpa of plastic waste from 2030 onwards (press release here).

Freepoint Eco-Systems also selected Alterra technology for a 192kTpa advanced recycling facility on the US Gulf Coast, in February-2023, with the output expected to be sold on to Shell (press release here).

Hence we have reviewed Alterra’s technology. Based on the patents, we can pinpoint five challenges in the plastic recycling industry, which Alterra aims to overcome.

Alterra’s patents cover a continuous process, with seven distinct stages (chart below), each with optimized reaction temperatures and residence times. Scavengers are added at the feed stage to remove impurities. And specific hardware is also discussed for mitigating fouling and de-volatilizing char. Good details are given in the patents.

Our observations on Alterra’s technology are covered in the data file. For example, heavy uses of scavengers may add costs above those considered in our simple plastic pyrolysis economic model. However, five years on from first looking at this technology, we also see increasing value in reliability, uptime and the ability to operate robustly.

Entropy CCS: natural gas CCS breakthrough?

Entropy CCS technology

Advantage Energy is a Montney gas and oil producer, which recently sourced a $300M investment from Brookfield to scale up its Entropy23 amine blend for natural-gas CCS. Entropy CCS technology has captured 90-93% of the CO2 at the first pilot plant at Glacier, Alberta, with 2.4 GJ/ton reboiler duty, which is 40% below MEA. This 7-page report summarizes Entropy patent details, confirming a moat around the technology, but three key points for de-risking.

Two challenges for post-combustion CCS have recently been in focus in our research. The first one is energy penalties of CCS (note here, data here). And the second one is amine degradation and possible release of toxic breakdown products to the atmosphere (note here).

One solution is to scrub the gas extensively before it reaches a CCS plant, including with a SO2 scrubber, SCR denox loop and electrostatic precipitator, which all add cost. Another solution is to prioritize relatively pure input streams and stable CCS solvents. For example we have recently looked at Aker’s JustCatch and Shell’s CANSOLV.

Advantage Energy, listed on TSX, has also been gaining attention in CCS markets, as it claims to have developed a solvent with low reboiler duty, low degradation rates. The Entropy CCS solvent has been tested at multi-kTpa scale at the Glacier gas plant in Alberta, and Brookfield has agreed to invest $300M in its scale-up (page 3).

We reviewed a highly detailed, 58-page patent from Entropy Inc in 2023, covering 25 different solvents that were tested in the lab, and scored the technology on our usual patent assessment framework.

Based on our Entropy CCS technology review, we can confidently guess what the solvent blend is (i.e., specific components, chart below), how and why it works, how degradation has been tested in the past, and whether there is a moat around the technology (pages 4-6).

Remaining challenges: what residual areas to de-risk for Entropy CCS technology? We outline three constructive findings, which decision-makers may wish to consider and explore. They are noted on page 7.

Copyright: Thunder Said Energy, 2019-2023.