CO2 concentrations in industrial exhaust streams?

The aim of this data-file is to compile CO2 concentrations in industrial exhaust streams, as a molar percentage of flue gas. This matters for the costs of CO2 separation (e.g., the amine process).

Costs will generally be c10-15% lower to separate out CO2 in middling processes such as blast furnaces and cement plants, compared to lower concentration processes such as coal and combined cycle gas plants.

Costs of separating CO2 from ambient air will be an order of magnitude higher again (at least c4-6x, as costs rise linearly as concentrations fall by each order of magnitude).

Most promisingly, some CO2 is already purely concentrated (e.g., after pre-treating natural gas before LNG liquefaction; or after separating out industrial hydrogen from SMR in the refining, ammonia, chemicals and blue hydrogen industries). These be the most promising options for CCS.

A breakdown of US energy consumption per person per year

The aim of this data-file is to disaggregate US energy consumption and CO2 emissions per person per year, and by category.

We estimate the Average American consumes 36MWH of energy each year, emits 20 tons of CO2, spends $2,000 per year directly on energy (6% of their income) and $4,500 in total energy costs, including the energy embedded in goods and services (15% of income). This makes a low cost energy transition crucial.

Data in the file are fully split out by fuel, by CO2 content, by cost and across ten different categories: goods, services, food, driving, flying, freight, public transit, heating, cooling and residential appliances (chart above). They are also split out by income group to test whether CO2 taxes can avoid being regressive.

The numbers can be stress-tested for different energy input prices and CO2 prices. We estimate the entire world can be decarbonized for a CO2 cost below $75/ton, which would absorb an additional c5% of average annual income. Alarmingly, some policy proposals are incentivizing technologies with $300-700/ton abatement costs, equivalent to 20-45% of average incomes.

Gas Pipelines: how much energy, CO2 and methane leaks?

This file aggregates granular data for 40 major US gas pipelines which transport 45TCF of gas per annum across 185,000 miles; and for 3,200 compressors at 640 related compressor stations.

The average CO2 intensity of long-distance gas pipelines is calculated based on the data, in kg of CO2e per mcf per 1,000 miles of gas transit. 80% of the emissions are from compressor power requirements. 20% is from methane leaks, which are also quantified, per mcf per 1,000 miles of gas transit.

Different pipelines and pipeline operators are ranked, to identify companies with low CO2 intensity despite high throughputs.

Covered companies include Berkshire Hathaway, Dominion, Enbridge, Energy Transfer, Kinder Morgan, Loews, TransCanada, Williams plus smaller companies.

CO2 of metal components: conventional vs additive manufacturing?

Manufacturing metal components can be extremely energy intensive, emitting 50-250kg of CO2 per kg of finished parts, as 60-95% of original materials are machined away in the manufacturing process.

This is where additive manufacturing is able to deliver c65% CO2 savings, per kg of materials, in our base case. The savings will be greater for more energy-intensive material inputs and when >80% of materials are machined away in the manufacturing process.

This data-file quantifies the CO2 savings of additively manufactured processes versus conventional manufacturing processes in kWh/kg and kgCO2e/kg. The calculations include material costs, preparation, machining and additive manufacturing itself. Our numbers are based on technical papers.

CO2-Cured Concrete: Solidia vs traditional cement?

CO2-cured concrete has c60% lower emissions than traditional concrete, whichis the most widely used construction material on the planet, comprising 4bn tons of annual CO2 emissions, or 8% of the global total.

This data-file profiles Solidia’s industry-redefining product — CO2-cured cement — based on an impressive array of 38 patents. We model the production costs, CO2 costs and full-cycle economics; then size the addressable market and outline our notes and patent data.

A rapid scale-up is now underway.  We see realistic medium-term CO2 savings of 10MTpa in the US and 300MTpa globally.  A CO2 price would further enable cost-competitive pricing, even after earning a 10-20% pricing premium versus traditional concrete, yielding exceptional IRRs.

CO2 from US bio-ethanol plants?

This data-file tabulates the CO2 emissions from US bioethanol plants, which produce around 1Mbpd of liquid fuels, with an average CO2 intensity of 85kg/boe. In addition, we estimate 160kg/boe of CO2 are emitted in producing US corn, so bio-ethanol has a total CO2 intensity of 245kg/boe (c40% less than conventional oil products).

Our data are based on granular disclosures from 170 separate facilities, which have reported to the EPA and EIA disclosures. Hence we can screen more and less CO2-intensive States and Companies.

Covered companies, ranked by ethanol capacity, include Poet, Valero, Great Plains, Koch, Marathon and White Energy.

Coal industry CO2 per ton

This data-file quantifies and disaggregate the CO2 emissions from a typical coal mining operation, across mining processes, coal-processing, methane emissions and freight/transportation.

We estimate that producing a ton of coal emits 0.19T of CO2, equivalent to 50kg/boe. The data are based on USGS technical papers, EPA disclosures from US coal mines and EIA disclosures on mine sizes and coal heat contents.

The conclusion is that domestic coal production will tend to emit 2x more CO2 than domestic natural gas production,  in addition to coal combustion emitting around 2x more CO2 than gas combustion.

However, numbers vary widely based on input assumptions, such as methane lakage rates, btu content and transportation distances, which can be flexed in the model.

Methane emissions from pneumatic devices, by operator, by basin

Methane leaks from 1M pneumatic devices across the US onshore oil and gas industry comprise 60% of all US upstream methane leaks and 23% of all upstream CO2. This data-file aggregates data on 563,000 pneumatic devices, from 300 acreage positions, of 200 onshore producers in 9 US basins.

The data are broken down acreage position by position, from high-bleed pneumatic devices, releasing an average of 4.2T of methane/device/year to pnuematic pumps and intermediate devices, releasing 1.5T, through to low-bleed pneumatic devices releasing 160kg/device/year.

It allows us to rank operators. 12 companies are identified, with a pressing priority to replace c135,000 medium and high bleed devices. 6 companies are identified with best-in-class use of pneumatics (chart below).

A summary of our conclusions is also written out in the second tab of the data-file.  For opportunities to resolve these leaks and replace pneumatic devices, please see our recent note on Mitigating Methane.

CO2 from plastics and petrochemical facilities?

This data-file aims to quantify the CO2 intensity of producing plastics, across the entire value chain from oil and gas inputs, to cracking, polymerisation, extrusion and end-of-life treatment.

Granular data are tabulated on 70 chemicals facilities around the US. Most facilities are not directly comparable. However, we have derived meaningful CO2 intensity data (per ton of product) for c20 of them. We find large and integrated petchem facilities tend to be more efficient (chart below)Beneficial energy economics for plastics are confirmed in the work. For example, our numbers suggest the CO2 emissions for a single-use plastic bottle would be c90% lower than a single-use glass bottle. Numbers could be further improved by next-generation technologies turning plastic back into oil.

 

Platform supply vessels: what contribution to CO2?

This data-model calculates the contribution of Platform Supply Vessels (PSVs) to an offshore oil and gas asset’s emissions profile, as measured in kg/boe.

Our base case estimate is 0.1kg/boe for a productive asset in a well-developed basin. The numbers can be increased c4x in a remote basin, or by another c4x for smaller fields, so emissions >1kg/boe are possible.

Initatives to lower these emissions by 10-20% through LNG-fuelling or hybridization are described in the final tab. They will likely save 0.01-0.02kg/boe from most PSVs and other supply vessels.