Pre-Salt Brazil: FPSO Tracker

This data-file tracks the construction progress of 30 FPSOs that are being deployed in the Brazilian pre-salt oil province. In each case, we quantify the vessel’s oil and gas handling capacity, development timing and recent news.

We also compare the FPSOs’ gas-handling capacity with regional pipeline capacity. There will only be room to monetize one-third of the pre-salt’s produced gas volumes by the mid-2020s. The rest  must be re-injected (chart below).

 

Major technologies to decarbonise power?

Leading Oil Majors will play a crucial role in decarbonising the energy system. Their initiatives should therefore be encouraged by policy-makers and ESG investors, particularly where new energy technologies are being developed, which will unlock further economic opportunities to accelerate the transition.

In order to help identify the leading companies, this-data file summarises c90 patents for de-carbonising power-generation. It is drawn from our database of over 3,000 distinct patents filed by the largest energy companies in 2018. These technologies will secure the role of fossil fuels, particularly natural gas, in a decarbonising energy system.

De-carbonising carbon?

Decarbonisation is often taken to mean the end of fossil fuels. But it could become more feasible simply to de-carbonise fossil fuels. This 19-page note explores two top opportunities: next-generation combustion technologies, which can meet the world’s energy needs relatively seamlessly, with zero carbon and little incremental cost. They are ‘Oxy-Combustion’ using the Allam Cycle and Chemical Looping Combustion. Leading Oil Majors support these solutions to create value advancing the energy transition.

Alternative truck fuels: how economic?

This data-file compares different trucking fuels — diesel, CNG, LNG, LPG and Hydrogen — across 35 variables. Most important are the economics, which are fully modelled.

Natural Gas can be close to competitive. On an energy-equivalent basis, $3/mcf gas is 4x more economical than $3/gal diesel. However, the advantages are offset by higher vehicle costs, operational costs and logistical costs. Overall, CNG ends up 10% more expensive, and LNG ends up 30% more expensive versus diesel-trucking. Mild environmental positives of gas are also offset by mild operational challenges.

Hydrogen still screens as an expensive alternative. We estimate vehicle costs are 2x higher than diesel trucks, while $15/kg hydrogen is 4x more expensive than diesel as a fuel.

Greenfield LNG: Does Exxon have an edge?

For large-scale capital projects in a commodity industry, harnessing better technologies tends to unlock better returns.

Hence this 7-page note evaluates ExxonMobil’s technology for constructing greenfield LNG plants, particularly in remote geographies. Its technical leadership stands out from our analysis of 3,000 patents across the industry. This matters as Exxon progresses new LNG investments in Mozambique, PNG and the US.

ExxonMobil has leading LNG technology for extra-large trains using the APX process, modular LNG units that minimise on-site construction costs, pressure-swing absorption to remove gas-contaminants and efficient gas turbines.

Opportunities should arise for investors in Exxon’s LNG projects, and for its partners, resource-owners and other stakeholders, to ensure that value is maximised.

Oxy-combustion: economics of zero-carbon gas?

Oxy-combustion is a next-generation power technology, burning fossil fuels in an inert atmosphere of CO2 and oxygen. It is easy to sequester CO2 from its exhaust gases, helping heat and power to decarbonise. We argue that IRRs can compete with conventional gas-fired power plants.

This is our model of the economics. It is constructed from technical disclosures. For example, Occidental petroleum and McDermott have already invested in one of the technology-leaders, NET Power, which constructed a demonstration plant in LaPorte Texas, starting up in 2018.

China’s Shale Challenge?

China’s future gas production, and thus its need for LNG imports, depends heavily on its prospects in shale: Technically recoverable resources have been assessed at a vast 31.6TCM by the EIA.

But >50% shortfalls are looming against the 2016 target to produce 30bcm by 2020. Production ran at just 11bcm last year. And many Majors have now exited. So what are the main challenges, hindering development?

In order to answer this question, we have summarised ten recent technical paper on the Chinese shale gas industry.

This data-file tabulates the most-cited challenges, and the solutions that are suggested to combat them. It also includes our “top ten conclusions” on Chinese shale gas.

Aerial Vehicles: why flying cars fly

Aerial vehicles will do in the 2020s what electric vehicles did in the 2010s. They will go from a niche technology, to a global mega-trend that no forecaster can ignore.

These conclusions stem from a deep-dive analysis into the technology, the fuel economies and the costs, all of which will be transformational.

This 20-page written-insight summarises the evidence, reviewing over 100 different companies’ efforts, checking the equations of flight for leading concepts, and bridging to competitive costs. Aerial vehicles accelerate the energy transition.

Oil Companies Drive the Energy Transition?

There is only one way to decarbonise the energy system: leading companies must find economic opportunities in better technologies. No other route can source sufficient capital to re-shape such a vast industry that spends c$2trn per annum. We outline seven game-changing opportunities. Leading energy Majors are already pursuing them in their portfolios, patents and venturing. Others must follow suit.

Chemical Looping Progress?

Chemical Looping Combustion is a next-generation technology for carbon capture, with potential to “clean up” fossil fuel power and obviate CO2 emissions. Costs and energy penalties are dramatically lower than current technologies. E.g., TOTAL is trialling CLC to create power from petcoke.

But does it work? To answer this question, we have tabulated data from the technical literature on tests (to-date) of 40 chemical looping combustion pilots, which have run collectively for 10,000 hours.

Operational data are also presented from one trial, suggesting a 38% conversion efficiency of the energy in fossil fuels, leading to economic cost estimates (below).