The Top 40 Private Companies for an Energy Transition

This data-file presents the ‘top 40’ private companies out of several hundred that have crossed our screens since the inception of Thunder Said Energy, looking back across all of our research.

For each company, we have used apples-to-apples criteria to score  economics, technical readiness, technical edge, decarbonization credentials and our own depth of analysis.

The data-file also contains a short, two-line description follows for each company, plus links to our wider research, which will outline each opportunity in detail.

Blockchain: why so energy intensive?

A single Bitcoin transaction currently uses c1,000kWh of electricity, which is 1 million times more than a traditional payment. Hence this 8-page note aims to explain how blockchain works, why it has been so energy intensive in the past, and how the energy multiplier could be reduced to maybe 100 – 1,000 x in a best case future scenario. Thus there could be a role for blockchain in some use cases in the energy transition.

Inspection costs: drones versus traditional quality control?

This data-file estimates the costs of drone inspections, for the construction and resources industries, using bottom-up numbers from technical papers.

Costs per hour can be 30% lower than for traditional quality control inspections. A single drone, including software licenses likely costs c$30k, which is disaggregated line-by-line.

The data-file also quantifies the capabilities of drones to monitor carbon accumulatio in forests, capturing the details of ten technical paper from the past decade, which used LiDAR to measure DBH (below).

Our notes from technical papers are also included in the data-file.

Companies in drones and drone services for construction?

The aim of this data-file is a simple screen of companies manufacturing drones and commercializing drone software. In includes 12 private companies and 4 public companies. For each company, we have tabulated their history, geography, number of patent filings and a short description.

Ventures for an Energy Transition?

This database tabulates almost 300 venture investments made by 9 of the leading Oil Majors, as the energy industry advances and transitions.

The largest portion of activity is now aimed at incubating New Energy technologies (c50% of the investments), as might be expected. Conversely, when we first created the data-file, in early-2019, the lion’s share of historical investments were in upstream technologies (c40% of the total). The investments are also highly digital (c40% of the total).

Four Oil Majors are incubating capabilities in new energies, as the energy system evolves. We are impressed by the opportunities they have accessed. Venturing is likely the right model to create most value in this fast-evolving space.

The full database shows which topic areas are most actively targeted by the Majors’ venturing, broken down across 25 sub-categories, including by company. We also chart which companies have gained stakes in the most interesting start-ups.

The Top Technologies in Energy

What are the top technologies to transform the global energy industry and the world? This data-file summarises where we have conducted differentiated analysis, across c100 technologies (and counting).

For each technology, we summarise the opportunity in two-lines. Then we score its economic impact, its technical maturity (TRL), and the depth of our work to-date. The output is a ranking of the top technologies, by category; and a “cost curve” for the total costs to decarbonise global energy.

Download this data-file and you will also receive updates for a year, as we add more technologies; and we will also be happy to dig into any technologies you would like to see added to the list.

Upstream technology leaders: weathering the downturn?

Leading technologies correlate 50-80% with ROACEs and -88% with costs in the energy industry. Hence, we assessed 6,000 patents from 2018-19, to determine which Energy Majors are best-placed to weather the downturn, benefit from dislocation and thrive in the recovery. We find clear leaders in onshore, offshore, shale, LNG and digital.

Digitization after the crisis: who benefits and how much?

Digitization offers superior economics and CO2 credentials. But now it will structurally accelerate due to higher resiliency: Just 8% of digitized industrial processes will be materially disrupted due to COVID-19, compared to 80% of non-digitized processes. In this 22-page research report, we have constructed a database of digitization case studies around the energy industry: to quantify the benefits, screen the most digital operators and identify longer-term winners from the supply chain.

Fiber Optic Cables: Patents and Leading Companies?

This data-file screens for the technology leaders in fiber-optic cables, which are crucial for the digitization of industries and the world’s structural shift towards remote-working.

The file starts by tracking 37,000 patents filed into fiber optic cabling, where the pace of research has risen at a 14% CAGR since 2009, with 75% of 2019’s patents filed in China and 18% in the US.

The 2019 data are shown more granularly in the ‘2019’ tab, aggregating descriptions of 4,000 patents and the companies behind them.

From these patents, we identify and evaluate the largest listed companies in fiber-optics, including a helpful profile of each company, their revenues, and the percent of their revenues  from fiber-optic cables.

The structural ascent of online retail?

Online retail could structurally accelerate by c9% due to the COVID-19 crisis, as is projected in this model. A full breakdown of inputs and underlying data are included. Individuals that work from home tend to make c63% more online retail purchases than in situ workers.