Carbon Costs of IMO 2020?

CO2 intensity of oil refineries could rise by 20% due to IMO 2020 regulations, according to the estimates in this data-file, if a refinery chooses to convert all its high-sulphur fuel oil into low-sulphur diesel.

The drivers are an extra stage of cracking, plus higher-temperature hydrocracking and hydrotreating, which will also have the knock-on consequence of increasing hydrogen demands.

Higher CO2 intensity conflicts with the industry’s aim of lowering its net emissions, and a 20% increase would effectively undo 30-years of prior efficiency gains in the refining industry.

Container ships versus trucks and trains

This data-file tabulates c10 examples for the fuel economy of container vessels, which is a function of their size and speed.

The most efficient container ships are 2x more efficient than typical trains and 20x more efficient than typical trucks.

We calculate that moving goods from overseas to the developed world’s c1bn consumers accounts for c0.5% of global CO2 emissions (c50% in ships, c50% in trucks). These calculations are also shown in the data-file.

Our Top Technologies for IMO 2020

So far we have reviewed 450 patents in the downstream oil and gas industry (ex-chemicals). A rare few prompted an excited thought — “that could be useful when IMO 2020 comes around”.  Hence, this data-file summarises the top 25+ proprietary technologies we have seen to capitalise on the opportunity. They are summarised and “scored” by company.

We will also provide you with updates of this file, as we continue reviewing patents and technical papers.

LNG in transport: scaling up by scaling down?

Next-generation technology in small-scale LNG has potential to reshape the global shipping-fuels industry. Especially after IMO 2020 sulphur regulations, LNG should compete with diesel. This note outlines the technologies, economics and opportunities for LNG as a transport fuel.

LNG as a Shipping Fuel: the Economics

This model provides line-by-line cost estimates for LNG as a shipping fuel, compared against diesel. We used industry data and academic studies to estimate the all-in costs for (a) trucking LNG (b) small-scale LNG and (c) LNG bunkering, to supply a relatively fuel-intensive shipping route.

After IMO 2020 regulations buoy diesel pricing, it should be economical to fuel newbuild ships with small-scale LNG; and in the US it should be economical to convert pre-existing ships to run on small-scale LNG.

Eni Slurry Technology. A leader for IMO 2020?

This data-file models the economics of Eni’s Slurry Technology, for hydro-converting heavy crudes and fuel oils into light products. It is among the top technologies we have reviewed for the arrival of IMO 2020 sulfur regulation, achieving >97% conversion of heavy fractions. The catalyst is stable and handles even ultra-heavy inputs. We see 10-20% IRRs at $20-40/bbl upgrading spreads. The data-file also summarises EST’s adoption in refineries to-date, future plans, and technical details of the EST process.

Global shipping and the switch from fuel oil?

The 240MTpa shipping-fuels market will be disrupted from 2020, under IMO sulphur regulations. Hence, this data-file breaks down the world’s 100,000-vessel shipping fleet into 13 distinct categories. Fuel consumption is estimated for each category. Distributions of weight and LNG fuel-equivalence are split for the four largest categories. We see 40-60MTpa upside to LNG demand from 2040, led by cruise-ships and large container-ships.

The data-file also includes helpful background on the marine fuels industry and consensus forecasts for LNG demand growth within it (below).

Copyright: Thunder Said Energy, 2022.