US CO2 and Methane Intensity by Basin

US CO2 and Methane Intensity by Basin

The CO2 intensity of oil and gas production is tabulated for 425 distinct company positions across 12 distinct US onshore basins in this data-file. Using the data, we can break down the upstream CO2 intensity (in kg/boe), methane leakage rates (%) and flaring intensity (mcf/boe), by company, by basin and across the US Lower 48.


In this database, we have aggregated and cleaned up 957 MB of data, disclosed by the operators of 425 large upstream oil and gas acreage positions. The data are reported every year to the US EPA, and made publicly available via the EPA FLIGHT tool.

The database covers 70% of the US oil and gas industry from 2021, including 8.8Mbpd of oil, 80bcfd of gas, 22Mboed of total production, 430,000 producing wells, 800,000 pneumatic devices and 60,000 flares. All of this is disaggregated by acreage positions, by operator and by basin. It is a treasure trove for energy and ESG analysts.

CO2 intensity. The mean average upstream oil and gas operation in 2021 emitted 10kg/boe of CO2e. Across the entire data-set, the lower quartile is below 3kg/boe. The upper quartile is above 13kg/boe. The upper decile is above 20kg/boe. And the upper percentile is above 70kg/boe. There is very heavy skew here (chart below).

The main reasons are methane leaks and flaring. The mean average asset in our sample has a methane leakage rate of 0.21%, and a flaring intensity of 0.03 mcf/bbl. There is a growing controversy over methane slip in flaring, which also means these emissions may be higher than reported. Flaring intensity by basin is charted below.

US CO2 intensity has been improving since 2018. CO2 intensity per basin has fallen by 17% over the past three years, while methane leakage rates have fallen by 22%. Activity has clearly stepped up to mitigate methane leaks.

(You can also see in the data-file who has the most work still to do in reducing future methane leaks. For example, one large E&P surprised us, as it has been vocal over its industry-leading CO2 credentials, yet it still has over 1,000 high bleed pneumatic devices across its Permian portfolio, which is about 10% of all the high-bleed pneumatics left in the Lower 48, and each device leaks 4 tons of methane per year!).

Most interesting is to rank the best companies in each basin, using the granular data, to identify leaders and laggards (chart below). A general observation is that larger, listed producers tend to have lower CO2 intensity, fewer methane leaks and lower flaring intensity than small private companies. Half-a-dozen large listed companies stand out, with exceptionally low CO2 intensities. Please consult the data-file for cost curves (like the one below).

Methane leaks and flaring intensity can also be disaggregated by company within each basin. For example, the chart below shows some large Permian producers effectively reporting zero flaring, while others are flaring off over 0.1 mcf/bbl.

All of the underlying data is also aggregated in a useful summary format, across the 425 different acreage positions reporting in to EPA FLIGHT, in case you want to compare different operators on a particularly granular basis.

Ventures for an Energy Transition?

Oil Major Venture Investments

This database tabulates almost 300 venture investments made by 9 of the leading Oil Majors, as the energy industry advances and transitions.


The largest portion of activity is now aimed at incubating New Energy technologies (c50% of the investments), as might be expected. Conversely, when we first created the data-file, in early-2019, the lion’s share of historical investments were in upstream technologies (c40% of the total). The investments are also highly digital (c40% of the total).

Four Oil Majors are incubating capabilities in new energies, as the energy system evolves. We are impressed by the opportunities they have accessed. Venturing is likely the right model to create most value in this fast-evolving space.

The full database shows which topic areas are most actively targeted by the Majors’ venturing, broken down across 25 sub-categories, including by company. We also chart which companies have gained stakes in the most interesting start-ups.

Methane emissions from pneumatic devices, by operator, by basin

Methane emissions from pneumatic devices

Methane leaks from 1M pneumatic devices across the US onshore oil and gas industry comprise 50% of all US upstream methane leaks and 15% of all upstream CO2. This data-file aggregates data on 500,000 pneumatic devices, from 300 acreage positions, of 200 onshore producers in 9 US basins.


The data are broken down acreage position by position, from high-bleed pneumatic devices, releasing an average of 4.1T of methane/device/year to pnuematic pumps and intermediate devices, releasing 1.4T, through to low-bleed pneumatic devices releasing 160kg/device/year.

It allows us to rank operators. Companies are identified, with a pressing priority to replace medium and high bleed devices. Other companies are identified with best-in-class use of pneumatics (chart below). The download contains 2018 and 2019 data, so you can compare YoY progress by company.

A summary of our conclusions is also written out in the second tab of the data-file.  For opportunities to resolve these leaks and replace pneumatic devices, please see our recent note on Mitigating Methane.

Oxy-combustion: economics of zero-carbon gas?

CO2-EOR in shale

Oxy-combustion is a next-generation power technology, burning fossil fuels in an inert atmosphere of CO2 and oxygen. It is easy to sequester CO2 from its exhaust gases, helping heat and power to decarbonise. The mechanics are described here. We model that IRRs can compete with conventional gas-fired power plants.


This is our model of the economics. It is constructed from technical disclosures. For example, Occidental petroleum and McDermott have already invested in one of the technology-leaders, NET Power, which constructed a demonstration plant for Allam Cycle Oxy-Combustion in LaPorte Texas, starting up in 2018.

A review of recent project progress has also been added to the data-file in early-2020.  Details remain relatively secretive. But we find 9 potential deployments which are being moved towards commerciality. The details we have found are summarized in the data-file.

Permian CO2 Emissions by Producer

Permian CO2 Emissions by Producer

This data-file tabulates Permian CO2 intensity based on regulatory disclosures from 20 of the leading producers to the EPA in 2018. Hence we can  calculate the basin’s upstream emissions, in tons and in kg/boe.

The data are fully disaggregated by company, across the 20 largest Permian E&Ps, Majors and independents; and across 18 different categories, such as combustion, flaring, venting, pneumatics, storage tanks and methane leaks.

A positive is that CO2 intensity is -52% correlated with operator production volumes, which suggests CO2 intensity can be reduced over time, as the industry grows and consolidates into the hands of larger companies.

Solar Use within the Oil Industry?

solar use within the oil industry

This data-file tabulates 20 solar projects being undertaken within the oil industry, in order to clean up production and reduce emissions. More projects are needed, as the total inventory will obviate <1% of oil industry CO2 by 2025.

For each project, we estimate total TWH of power generation per annum, the CO2 emissions avoided, the timeline; and we also summarize the project details.

Leading examples include the use of concentrated solar for steam-EOR in Oman and California, Solar PV in the Permian, and leading efforts from specific companies: such as Occidental, Shell, Eni and other Majors.

CO2-EOR in Shale: the economics

CO2-EOR in shale

We have modelled the economics of CO2-EOR in shale, after interest in this topic spiked 2.3x YoY in the 2019 technical literature. Our deep-dive research into the topic is linked here.

The economics appear positive, with a 15% IRR under our base case assumptions, and very plausible upside to 25-30%.

There is potential to sequester 3.5bn tons of CO2 in shale formations in the US, plus another 40bn tons internationally, for a CO2 disposal fee of c$40/ton, which we have quantified based on the technical literature.

The model also allows you to stress-test your own assumptions such as: oil prices, gas prices, CO2 prices, CO2 tax-credits, compressor costs and productivity uplift. The impacts on IRR, NPV and FCF are visible.

Major technologies to decarbonise power?

leading oil companies for decarbonising the energy system

Leading Oil Majors will play a crucial role in decarbonising the energy system. Their initiatives should therefore be encouraged by policy-makers and ESG investors, particularly where new energy technologies are being developed, which will unlock further economic opportunities to accelerate the transition.

In order to help identify the leading companies, this-data file summarises c90 patents for de-carbonising power-generation. It is drawn from our database of over 3,000 distinct patents filed by the largest energy companies in 2018. These technologies will secure the role of fossil fuels, particularly natural gas, in a decarbonising energy system.

De-carbonising carbon?

De-Carbonising Carbon

Decarbonisation is often taken to mean the end of fossil fuels. But it could become more feasible simply to de-carbonise fossil fuels. This 19-page note explores two top opportunities: next-generation combustion technologies, which can meet the world’s energy needs relatively seamlessly, with zero carbon and little incremental cost. They are ‘Oxy-Combustion’ using the Allam Cycle and Chemical Looping Combustion. Leading Oil Majors support these solutions to create value advancing the energy transition.

Re-Frac Economics. How much uplift?

economics of re-fracturing shale wells

This model assesses the production-uplifts and well-level economics of re-fracturing shale wells in the Permian and the Eagle Ford, to improve recovery of previously missed pay. The opportunity is interesting but not quite game-changing.

Economic breakevens are seen at c$45/bbl under our base-case assumptions. The most likely NPV uplift is c$0.5M/well. However higher prices and process-enhancements can unlock $2-3M of NPV10 per well.

Input assumptions are informed by disclosures from Occidental and Devon Energy, the two E&Ps that dominate the technical literature. They are summarised in the ‘notes’ tab. Please download the file to stress-test the assumptions…

Copyright: Thunder Said Energy, 2019-2023.