Bio-engineer plants to absorb more CO2?

Our roadmap towards ‘net zero’ requires 20-30GTpa of carbon offsets using nature based solutions, including reforestation and soil carbon. This short note considers whether the task could be facilitated by bio-engineering plants to sequester more CO2. We find exciting ambitions, and promising pilots, but the space is not yet investable.


What is bio-engineering? In 2016, scientists at DuPont gene-edited maize to grow more effectively in dry conditions. In 2017, researchers at the University of Oxford introduced a maize gene into rice plants, to increase the number of photosynthetic chloroplasts surrounding leaf veins. In 2019, scientists at Huazhong Agricultural University gene-edited rice to tolerate higher soil salinity. These are examples of bio-engineering: modifying the genetic code of plants for practical purposes.

How could it help? The world’s land plants absorb 123GTpa of carbon each year through photosynthesis. 120GTpa is re-released through respiration and decomposition. The result is a net sink of 3GTpa. For contrast, total anthropogenic carbon emissions are 12GTpa. It follows that small changes in the natural carbon cycle could materially shift carbon balances, per our climate model below.

The limitations of photosynthesis. Photosynthesis uses sunlight to convert CO2 into plant-sugars. It is only 1-5% inefficient, suggesting great potential for improvement. It is also vastly complex, comprising over 170 separate sub-stages. Amidst the complexity, RuBisCO is the most crucial limitation.

The limitations of RuBisCO. RuBisCO is an enzyme that catalyzes the reaction between CO2 and RuBP during photosynthesis. However, the RuBisCO enzyme is imprecise. It evolved at a time when the world’s atmosphere contained much lower oxygen concentrations. Unfortunately, under present atmospheric conditions, 20-35% of RuBisCO’s catalytic activity reacts O2 with RuBP, instead of CO2. The resultant products cannot continue their biochemical journey into becoming sugars. Instead, they are broken down in the process of photorespiration. Photorespiration uses up c30% of the total energy fixed by photosynthesis, and re-releases CO2 into the atmosphere. Photorespiration lowers agricultural yields by 20-40%.

What if RuBisCO could be helped to fix more CO2 and less oxygen? One way to do this is to increase the atmospheric concentration of CO2 in greenhouses, which can increase crop yields by c30%, per our note below. Another way is through bio-engineering.

Realizing Increased Photosynthetic Efficiency (RIPE) is a research institute funded by the Bill and Melinda Gates Foundation, UK foreign aid, the USDA and academic institutions. It aims to generate higher crop yields per unit of land, using bioscience. After ten years of research, RIPE has recently modified tobacco plants with genes from green algae and pumpkin plants to reduce the energy penalties from photorespiration. The result is that these modified tobacco plants grew 40% larger. A follow-up study may achieve plants that are 60% larger. Similar modifications are also being tested on soybeans and cowpea plants.

Researchers at the University of Wurzburg have also modelled metabolic pathways that may increase the photosynthetic efficiency of plants, potentially by as much as 5x, with results published in 2020. The work uses synthetic CO2-fixating carboxylases, RuBisCO from cyanobacteria, and additional methods of preventing fixed CO2 from being re-released. Experiments are planned to test the work in tobacco plants and thale cress.

Increasing photosynthetic efficiency and crop yields could be a crucial help, lowering the land intensity of crop production, which covers 1.7bn hectares of the globe today (data below). For comparison, our target of 15GTpa of reforestation will require 1.2bn hectares of land, hence any material reductions in cropland requirements will be helpful.

Sequestering more of the CO2. 50-95% of the carbon that is stored in natural eco-systems is not stored in biomass above ground, but in the soil. An emerging set of agricultural practices that restore soil carbon are explored in our research note below. But another option is to ‘program’ plants to grow deeper, larger roots, which push more carbon into soils.

The Land Institute in Salina, Kansas has developed a grain called Kernza. It is derived from an ancestor of wheat. It is perennial, rather than requiring yearly replanting. Its roots reach 3-6x further into the soil than conventional wheat, which connotes 3-6x more carbon storage, and also promotes drought resistance. It is being grown across 2,000 acres today.

The US Department of Energy also has a Laboratory of Environmental Molecular Sciences, aiming to increase carbon transfer into the soil. One team has developed a strain of rice that emits less methane, as it contains a gene from barley, reducing the carbon that the plant moves underground, which in turn reduces the carbon that can be metabolized by anaerobic bacteria. Studies are underway to reverse the process and increase the carbon that crops move underground.

The Salk Institute for Biological Studies is based in La Jolla, California. It is undertaking the most elaborate program to bioengineer crops and other plants, to sequester up to 20x more CO2 than conventional crops. Deploying these plants across 6% of the world’s agricultural lands are said to potentially offset 50% of global CO2 emissions.

Salk’s Harnessing Plants Initiative started in 2017 and aims to grow “ideal plants” with greater efficiency at pulling CO2 from the air, deeper roots that store more carbon underground, and other superior agricultural properties. One pathway is to promote production of suberin, the carbon-rich polymer in cork (but also found in melon rinds, avocado skins and plant roots). This is waxy, water-resistant compound that degrades very slowly, thus remaining in the soil for centuries.

In 2019, Salk’s team discovered a gene, which determines whether roots will grow shallow or deep. It is called EXOCYST70A3, and affects the distribution of the PIN4 protein. PIN4 modulates the transport of auxin, a hormone that regulates root architecture. Different alleles of EXOCYST70A3 can increase root depth and plant resistance.

Technical readiness is the challenge for all of the bio-engineering methods discussed above. We generally begin integrating technologies into our models (first with high risking, later with lower risking) once they have surpassed TRL7. No bio-engineering method is there yet. Salk received a $35M grant in 2019, to accelerate its work, but prototype crop variants (corn, soybean, rice) are still not foreseen for five years. More pessimistically, scientists at RIPE have said it could take 15-years to deploy enhanced crops in the field. So while we will track this technology, it is not yet moving our models.

The Amazon tipping point theory?

The Amazon tipping point theory postulates that another 2-10% deforestation could make the world’s largest tropical rainforest too dry to sustain itself. Thus the Amazon would turn into a savanna, releasing 80GT of carbon into the atmosphere, single-handedly inflating atmospheric CO2 by 40ppm (to well above the 450ppm limit for 2C warming). This matters as Amazon deforestation rates have already doubled under Jair Bolsonaro’s presidency. This note explores implications, including international tensions, divestments, prioritization in a Biden presidency, and consequences for other transition technologies.


Global deforestation remains the single largest contributor to CO2e-emissions induced by man’s activities, more than the emissions from all passenger cars; and destruction of nature remains the largest overall contributor, more than all of China (chart below). This note is about a particularly worrying feedback loop in the Amazon rainforest, which could single-handedly wipe out the world’s remaining CO2 budget, effectively negating the impact of all other climate policies globally.

What is the Amazon tipping point theory?

The Amazon rainforest currently covers 5.5M square kilometers, comprising the largest, contiguous tropical forest in the world. 50% is in Brazil, and the remainder is spread around Peru, Colombia and half-a-dozen other South American countries. It contains 20% of all the planet’s plant and animal species, including 40,000 plant species alone.

Deforestation of the Amazon has reached 15-17% of its original area overall, and around 19% in Brazil. 800,000 square kilometers has been lost to-date (a land area equivalent to 2x California; or all of France plus Germany). Brazil’s annual deforestation rates have averaged 20,000 square kilometers per year from 1990-2004 (the land area of New Jersey or Slovenia). But the rate slowed to a trough of 5,000 square kilometers in 2014 due to improving environmental policies.

Unfortunately, more recently, Brazil’s deforestation rate has re-doubled (chart below). Jair Bolsonaro’s Presidency began in January-2019, following campaign pledges to ease environmental and land use regulations (which require 80% of legal Amazon land holdings to remain uncleared). Violations of these regulations are now said to be going unpunished. Bans on planting sugarcane in the Amazon have been lifted. Bolsonaro has even repudiated data published by Brazil’s own government agencies showing deforestation rates rising and accused actor and environmentalist, Leonardo DiCaprio of starting wildfires!

This matters because of the hydrology of the Amazon. Water in the basin tends to move from East to West. Each molecule typically falls as rainfall six times. It is repeatedly taken up by trees, transpired back into the atmosphere, and precipitated back down to Earth. Over half of the rain falling in the Amazon has originated from trees in the Amazon. It is a self-sustaining feedback loop.

The Amazon Tipping Point theory predicts that below some critical level of forest cover, this self-sustaining feedback loop will break. Less rainforest means less transpiration. Less transpiration means less rainfall. Less rainfall means less rainforest. Specifically, converting each hectare of forest to cropland reduces regional precipitation by 0.5M liters/year.

After the tipping point it is feared that the basin will transition into a savanna or scrubland. 50-100% of the forest cover would die back.

Unfortunately, this is not a ‘fringe’ theory. Many different technical papers acknowledge and model the risk, although specific climate models are imprecise, and do not always agree on timings and magnitudes. For example, the Western Amazon, closer to the Andes, might retain more forests than the East and Central parts of the basin. Another uncertainty is the moderating impacts of fire, as dryer forests will be more flammable, and thus more susceptible to slash-and-burn clearances, while raging fires will also reach further.

When is the tipping point? Various technical papers have estimated that the Amazon tipping point occurs when 20-25% of the forest has been cleared. This is an additional 2-10% from today’s levels, equivalent to deforesting another 100-600k acres, which could happen within 2-30 years.

What carbon stock is at risk of being released?

A typical forest contains around 300T of carbon per hectare (chart below). Thus 5.5M square kilometers of the Amazon is expected to contain 165GT of carbon. About 40% of the carbon is usually stored in trees (estimated at 60-80GT in the Amazon) and 60% is stored in roots and soils, which degrades more slowly. Hence, if just half of the remaining Amazon disappears, this would slowly release c80GT of carbon into the atmosphere.

Each billion tons (GT) of carbon released into the atmosphere is equivalent to raising atmospheric CO2 by around 0.5ppm. Hence a 80GT carbon release from the Amazon would by itself raise atmospheric CO2 from 415ppm today to around 455ppm. This single change (notwithstanding the continued and unmitigated burning of fossil fuels) would tip the world above the 450ppm threshold needed to keep global warming to an estimated 2-degrees (climate model below).

Can the tipping point be averted?

The solution to Amazon tipping points is technically simple: stop burning down forests and start re-planting them. This does not require electrolysing water molecules into hydrogen, smoothing volatility in renewable-heavy grids, or developing next-generation batteries. It requires something much harder: international diplomacy.

Inflammatory statements? In September-2019, Bolsonaro defended his environmental policies in a speech at the UN General Assembly. International critics were accused of assaulting Brazil’s sovereignty. Brazil considers itself free to prioritize economic development over environment.

Forest for ransom? In the past, Western countries have actually paid Brazil to safeguard its rainforests, although this arrangement has now fallen apart. Specifically, the ‘Amazon Fund’ was created in 2008. It is managed by Brazil’s state-owned development bank, BNDES. $1.3bn has been donated to the fund, from Norway (94%), Germany (5%) and Petrobras (1%). But after taking office, Bolsonaro has packed the fund’s steering committee with members of his inner circle, and in May-2019, he started using the Fund to compensate land developers whose lands were confiscated for environmental violations. Hence Norway and Germany suspended fund payments.

Divestment and trade tensions? As Brazil’s stance on the Amazon has grown more confrontational, it is possible that decision-makers may distance themselves from the country. Global investment funds have threatened to divest. (Could Brazil even surpass the coal industry as the divestment movement’s whipping boy?). Multi-national corporations may also be more cautious around investing in the country (but probably at the margin). Finally, Amazon deforestation is said to endanger future trade deals.

The Biden Factor? President-elect Biden may also seek to influence the Amazon issue. Biden stated the world should collectively offer Brazil $20bn to stop Amazon deforestation and threaten economic consequences for refusing. An executive order re-entering the Paris Climate Agreement would also help the situation (Brazil had actually committed to restoring 12M hectares of native vegetation under the accord). It will be interesting to see how Biden balances climate-focused priorities in the US with this arguably more urgent issue abroad.

Crucial Conclusions? If the Amazon surpasses its tipping point, there would be no chance of limiting atmospheric CO2 to 450ppm or preventing a catastrophic loss of biodiversity. Diplomacy is difficult. But fortunately, decision-makers can take measures into their own hands. Our note below profiles tree-planting charities. This is the lowest-cost decarbonization option we have found in all of our research. It restores nature, including the Amazon. Ultimately, we have argued that restoring nature may the most practical route to achieving climate objectives, while ‘bursting the bubble’ of other transition technologies.

Paulownia tomentosa: the miracle tree?

The ‘Empress Tree’ has been highlighted as a miracle solution to climate change, with potential to absorb 10x more CO2 than other tree species; while its strong, light-weight timber is prized as the “aluminium of woods”. This note investigates the potential. There is clear room to optimise nature based solutions. But there may be risks for the Empress.


Nature based solutions to climate change represent the largest and lowest cost opportunity in the energy transition. Those who follow our research will know we see potential to offset 15-30bn tons of CO2 emissions per year via this route (summary below).

The costs are incredibly low, at $3-10/ton, when reforestation efforts are well structured through reputable tree-planting charities (note below). Hence we argue that restoring nature will push higher-cost energy technologies off the cost curve.

Broadly, our reforestation numbers assume 3bn acres could be re-planted, absorbing 5T of CO2 per acre per year, which is the average across dozens of technical papers for typical deciduous forests in the Northern hemisphere (data-file below).

There are further optimisation opportunities to capture around 10T of CO2 per acre per year using faster-growing tree species, such as poplar, eucalyptus and mangrove. However, some commentators claim that another tree genus, known as Paulownia, can achieve an incredible 103T of CO2 offsets per acre per year.

If 100T/acre/year were possible, it would be a game-changer for the potential of reforestation. It would, in principle, only require 0.2 acres of Paulownia to offset the 20Tpa CO2 emissions of the average American. For comparison, population density in the Lower 48 is around 6 acres per American.

Paulownia: the miracle tree?

What is Paulownia? Paulownia is a tree genus, named after Princess Anna Pavlovna, daughter of Tsar Paul I of Russia (1754-1801). It has at least 6 species, of which Paulownia tomentosa is the fastest-growing “miracle” variety. This species also goes by the names: Empress Tree, Princess Tree and Kiri (Japanese).

Paulownia tomentosa can grow by a remarkable 6 meters in one year and reach 27m in height. It then adds 3-4cm of diameter to its trunk each year. It is shown below towering over the other plants in a garden (here, at about 1.5 years old).

Reasons for remarkable growth rates include that Paulownia is a C4 plant. This photosynthetic pathway produces more leaf sugar, especially in warm conditions. By contrast, most other trees are C3 plants and fix CO2 using the Rubisco enzyme, which is not saturated (creating inefficiency) and not specific (so it also wastes energy fixing oxygen). Paulownia’s leaves are also very large, helping it to absorb more light. It also simply appears to have a faster metabolism than other species. And finally, its wood is 30-40% less dense than other species, allowing it to accumulate a large size quickly.

Other Advantages?

Paulownia’s timber is highly prized and sometimes termed the “aluminium of woods”. It is light, at 300kg/m3 (oak is 540kg/m3) and 30% stronger than pine. It does not warp, crack or twist. It is naturally water and fire resistant. When used in flooring, it is also less slippery and softer than other woods (which is noted as advantageous for those prone to falling over). The wood is also suited to making furniture and musical instruments.

Pollutants are well absorbed by Paulownia’s large leaves, which can be 40-60cm long. Hence one study that crossed are screens examined planting Paulownia in a Northern Italian city, to reduce particulate concentrations toward recommended limits.

Other advantages are ornamental qualities with shade, “wonderful purple scented flowers” (below), which support honey bees, and the ability to restore degraded soils.

A final remarkable feature of Paulownia is that you can cut it down and it will re-grow, up to seven times, rapidly springing back from its stump.

Source: Wikimedia Commons

Costs of CO2 offsets using Paulownia?

Our usual model for reforestation economics is shown below, assuming a typical planting cost of $360/acre. Paulownia may be modestly more expensive to grow. Our reading suggests a broad range of $2-7/tree multiplied by c250 trees per acre in commercial plantations. The largest costs are cuttings and cultivation of saplings. Thereafter, paulownia requires “minimal management and little investment”. Hence if growth rates are 10x faster than traditional trees, all else equal, we would expect CO2 offset costs to be c10x lower, at $2-5/ton (including land acquisition costs at developed world prices).

Examples of Paulownia?

Over 2M hectares of Empress trees are cultivated in China, often being inter-cropped with wheat. But Paulownia cultivation in the Western world is more niche. As some examples: Jimmy Carter famously grows 15 acres of Paulownia trees on his farm in Georgia. As a commercial investment, WorldTree is an Arizona-based company that manages 2,600 acres of Empress Trees and plans to plant 30,000 acres more. It claims to be the largest grower of non-invasive Paulownia in the world. Furthermore, ECO2 is a privately owned Australian company, headquartered in Queensland. It claims to have cultivated a variety of Paulownia tree, which can reach 20m after 3-5 years and sequester 5-10x more CO2 than other trees, or around 2.5T of CO2 per tree. Finally, oil companies are exploring reforestation initiatives. For example, YPF noted in its 2018 sustainability report plans to test-plant 40 species of Empress Trees in 2019.

Problems with Paulownia?

Invasiveness? One of the largest pushbacks on reforestation is that large-scale planting of single forest varieties may impair biodiversity (a chart of all the pushbacks is below, with some irony that environmentalists call for drastic action to avert the perils of climate change, then often say, no, “not that drastic action”). In the US, Paulownia is categorized as an invasive plant. A single plant can produce 20M seeds in a year. In some States, such as Connecticut, sales of the plant are even banned. Paulownia did in fact exist in North America prior the last Ice Age. It was re-introduced from China in 1834, when seeds were accidentally released from dinnerware packaging materials. Whatever intuitions one might have, some factions are going to protest against Western cultivation of Paulownia.

But the greatest question mark over Paulownia’s CO2 offset credentials is in the numbers. Different studies are tabulated below.

103T of CO2 uptake per acre is the most widely cited number online. But this figure derives from a single study, conducted in 2005. Whose methodology is woefully rough. The study simply assumes a 12’x12′ planting of Paulownia (750/ha, 99.5% survival) and then uses a formula to estimate the CO2 uptake from the trees’ target height and width.

A follow-up study was published in 2019, estimating 38-90T of CO2 uptake per acre per year. But upon review, the upper bound is extrapolating the “maximum growth rate”, which is known to be 2-3x faster than the average growth rate (charts below). The study is also vague on its modelling assumptions. It was funded by a company that commercializes Paulownia plantations. Finally, the study itself notes “additional research is needed in order to quantify the carbon sequestration rates of Paulownia trees under the specific management regime employed by World Tree’s Eco-Tree Program, by continuing to collect DBH values over the 10 to 12 year harvest cycle.”

Achieving monster growth rates will vary with growing conditions. Ideal conditions are warmer climates (the tolerable range is -24 to 45C), flattish, well-drained soil with pH 5-9, <25% clay, <1% salinity, <2,000m altitude, >800mm rainfall and <28kmph wind. But past studies planting the Empress Tree in Eurasia have ranged from 3-15 tons of CO2 per acre per year, which is not so remarkable versus other tree varieties.

Diseases. Finally, dense clusters of trees may fall short of growth targets due to disease. Paulownia, in particular, is susceptible to an affliction known as ‘Witches Broom’, which causes the tips of infected branches to die, leading to a cluster of dead branches. The wood is of poor quality and the growth rate of the plant diminished.

We conclude that there is great potential for nature based solutions, especially for their optimisation to boost CO2 uptake rates. Paulownia may be among the options. However, more data may be needed in the West before it can be heralded as a miracle plant.

Green deserts: a final frontier for forest carbon?

Forests can offset 15bn ton of CO2 per year from 3bn global acres. But is there potential to afforest any of the world’s 11bn acres of arid and semi-arid lands, by desalinating and distributing seawater? Our 18-page note answers this question. While the energy economics do not work in the most extreme deserts (e.g., the Sahara), $60-120/ton CO2 prices may be sufficient in semi-arid climates, while the best economics of all use waste water from oil and gas, such as in the Permian basin.


The opportunity and challenges for nature based solutions to climate change are outlined on pages 2-4, explaining the rationale for afforesting deserts.

Precedents for afforesting deserts, including detailed case studies from the Academic literature, are reviewed on pages 5-8.

Water requirements are quantified, based on data from 60 tree species and the forestry industry, on pages 9-10.

The energy economics of desalinating and piping water are presented on pages 11-12.

The challenges of afforestation in the most extreme desert environments are modelled on page 13, showing why it is almost impossible to grow forests in the Sahara. The CO2 costs of supplying sufficient water could exceed the CO2 absorbed by new trees.

Supplementing rainfall in marginal lands is a more compelling economic model (e.g., adding the equivalent of 100mm new rainfall to marginal lands with c300-400mm), as shown on page 14.

The best case we can find is to use Permian waste water. Costs of desalination could be lower than current costs of disposal, while Permian upstream operations on the reforested acreage could be made carbon neutral, per pages 16-17.

A short list of companies exposed to the theme is presented on page 18.

Can carbon-neutral fuels re-shape the oil industry?

Fuel retailers have a game-changing opportunity seeding new forests, ourlined in our 26-page note. They could offset c15bn tons of CO2 per annum, enough to accommodate 85Mbpd of oil and 400TCF of annual gas use in a fully decarbonized energy system. The cost is competitive, well below c$50/ton. It is natural to sell carbon credits alongside fuels and earn a margin on both. Hence, we calculate 15-25% uplifts in the value of fuel retail stations, allaying fears over CO2, and benefitting as road fuel demand surges after COVID.


The advatages of forestry projects are articulated on pages 2-7, explaining why fuel-retailers may be best placed to commercialise genuine carbon credits.

Current costs of carbon credits are assessed on pages 8-10, adjusting for the drawback that some of these carbon credits are not “real” CO2-offsets.

The economics of future forest projects to capture CO2 are laid out on 11-14, including opportunities to deflate costs using new business models and digital technologies. We find c10% unlevered IRRs well below $50/ton CO2 costs.

What model should fuel-retailers use, to collect CO2 credits at the point of fuel-sale? We lay out three options on pages 15-18. Two uplift NPVs 15-25%. One could double or treble valuations, but requires more risk, and trust.

The ultimate scalability of forest projects is assessed on pages 19-25, calculating the total acreage, total CO2 absorption and total fossil fuels that can thus be preserved in the mix. Next-generation bioscience technologies provide upside.

A summary of different companies forest/retail initiatives so far is outlined on page 26.

Ten Themes for Energy in the 2020s

We presented our ‘Top Ten Themes for Energy in the 2020s’ to an audience at Yale SOM, in February-2020. The audio recording is available below. The slides are available to TSE clients, in order to follow along with the presentation.


Please sign up to our distribution list, to receive our best ideas going forwards…

This text constitutes Thunder Said Energy’s terms, conditions, its privacy policy, its GDPR policy and other relevant contact details. By reading our written content, you agree to abide by these terms of use.

Terms of Use

1. Use of the Thunder Said Energy Website

These conditions are a legal agreement between you and Thunder Said Energy (“we” or “us”). They set out the basis on which you may make use of the Thunder Said Energy’s services, accessed through www.thundersaidenergy.com (the “site”), whether as a guest or a subscribing client.

Please read these conditions before you use the Site, as they will apply. You must not use the site if you do not agree to them.

We reserve the right to change these conditions at a later date.

2. Information about Thunder Said Energy

Thunder Said Energy LLC is a registered company in Connecticut, United States, effective April-2019.

3. Accuracy of Content

The information on the site (our “content”) is for general information purposes. It is not intended to address your particular requirements.

We have no liability for any loss or damage arising from using our content.

Our content shall not be construed as investment advice on the merits of buying, selling, subscribing to, or underwriting any shares, securities of other financial investments. You do any of the above entirely at your own risk: Thunder Said Energy shall have no liability whatsoever for any adverse consequences thereof.

We strive for, but do not guarantee, the accuracy of our content. We do not represent that it is error-free, will be corrected or that your use will provide specific results. If you believe anything is inaccurate, please let us know via email, so we may update it as appropriate.

The future is uncertain. There can be no assurance that our opinions, forecasts or estimates will be realized.

You hereby acknowledge that the risk to the accuracy and completeness of our content, and any reliance upon it, is with you.

4. Limitation of Liability

Thunder Said Energy will not be liable for any loss of profits, business, contracts, revenue, goodwill or anticipated savings or other indirect losses

Nothing in these terms seeks to exclude or limit any liability that cannot be excluded or limited by US, UK or European law.

5. Intellectual Property Rights

Our content, including any information, imagery or materials created by us are owned by and are confidential to Thunder Said Energy and are protected by copyright.

Any citation of our content, including short passages of text is to be attributed to Thunder Said Energy, plus a link to our website www.thundersaidenergy.com. We would appreciate it if you sought our prior approval for citing our content.

Distributing, reproducing, transmitting or re-selling our content in any medium, whole or in part, is prohibited without prior permission of Thunder Said Energy. We reserve the right to prosecute against illegal copying or sharing of our content.

You may not alter, obscure or remove any trade marks from our content.

6. Links

Other websites and resources are linked on our site with the aim of helping our users

All are independent from Thunder Said Energy, with the exception of Redburn, which is a collaborating partner of Thunder Said Energy.

Thunder Said Energy does not accept any responsibility for the content or the use of linked websites and resources; or of the content of other sites that link to ours.

Use of any links is made at your own risk. You must take your own precautions to ensure any selected link or download is free from any viruses or other unpleasantness.

You must not link to our website from any site that is indecent, inappropriate or unlawful.

7. Accessing Our Content

You may be provided with a username and password to access our content. You are responsible for keeping them confidential

You may not share the username and password with, or transfer them to any third party.

You must notify Thunder Said Energy immediately if you become aware of any unauthorised use of your user name and password, or any other breach of security.

If your access to our content occurs through a corporate account, your rights to access our content may cease if your employment terminates at that company, which will be at the discretion of Thunder Said Energy.

You and your company are responsible for notifying Thunder Said Energy of any termination of employment, and any unauthorised use of our content after your employment ceases.

8. Viruses

Thunder Said Energy does not guarantee that its site will be secure or free from bugs or viruses. You are responsible for configuring your own virus protection software.

You must not misuse the site by knowingly seeking to introduce viruses, trojans, worms, logic bombs or other material which is malicious or technologically harmful.

You must not attempt to gain unauthorised access to the Site, its server, or any computer or database connected to the Site.

In the event of breaching these conditions, Thunder Said Energy will cooperate with relevant law enforcement authorities, may disclose your identity to them, and your right to use the site will cease.

9. Privacy and Cookies

Thunder Said Energy’s policy on data protection, privacy and cookies is set out in our privacy notice and cookie policy. You are encouraged to read both of these.

10. Governing Law and Jurisdiction

These terms of use and their formation are governed by US, UK and European law.

Thunder Said Energy may pursue injunctive relief or similar to enforce the provisions of these terms of use in any appropriate forum.

11. General

Any formal legal notices to Thunder Said Energy must be sent to [email protected]

Failure by Thunder Said Energy to enforce a right does not result in a waiver of such right.

If any provision in these terms of use is deemed invalid or unenforceable, the rest of these terms will remain in full force and effect.

These terms of use, privacy notice and cookie policy, constitute the entire agreement between you and Thunder Said Energy relating to your use of the Site, and supersede all other or previous agreements.

Thunder Said Energy may amend these terms at any time by posting such changes on this page of the site.

12. Further Information

Further information on these terms or any queries may be made by contacting Thunder Said Energy via the postal address, email address or phone numbers below.

Privacy Policy

Thunder Said Energy (“we”, “us”) respects your preferences on the collection and use of your personal information. The following statements explain our policies.

We are committed to protecting your privacy, while using our websites, products and services (our “platform”).

You should review this Privacy Policy periodically to keep up to date on our most current policies; as we reserve the right, at any time, to modify this Privacy Policy.

Any changes will be posted in this Privacy Policy. Any material changes may also be notified, e.g., via email.

1. Scope

This Policy applies to our platform. It provides you with guidance on your rights and obligations pertaining to your personal information.

2. Collection of Personal Information

Our general philosophy and ambition is to safeguard your personal data by minimising what we collect, and storing what we do collect in a secure manner.

Thunder Said Energy is the data controller for personal data we collect through our platform.

Thunder Said Energy will collect personal information that is necessary for our business: to improve the usability of our platform and help us tailor content for you.

Specifically, when you register with Thunder Said Energy, we will collect your name, email address, location, subscription preferences and preferred method of contact. We may collect additional information.

Collecting personal information will be self-apparent or will be disclosed to you at the time of collection: most often, when you enter it into an online submission form, when you request a trial or when you subscribe to our platform.

Thunder Said Energy will use this information for the purposes for which it was collected.

Thunder Said Energy does not share any personal data with any third parties, potentially with the exception of Redburn (see below).

Rob West, the principal research analyst at Thunder Said Energy, is bound by a non-compete agreement with Redburn, until December-2019, originating from Rob’s employment at Redburn, which ended in March-2019. As part of Redburn’s collaboration with Thunder Said Energy, it was agreed to release Rob from certain provisions of the non-compete. Specifically, pre-existing clients of Redburn will not be blocked from accessing Thunder Said Energy’s content. However, Redburn reserves the right to ask Thunder Said Energy for the names of firms who have accessed specific content and research products, in order to ensure compliance with this non-compete agreement.

Our platform uses several ‘plug ins’ and ‘cookies’ which are described in more detail below, including Google Analytics.

3. Purpose of Personal Information

We may use your personal information for operational, legal, administrative, and other legitimate purposes permitted by applicable laws. This may include:

Providing you with requested emails, products and services.
Providing you with information regarding our company.
Monitoring your use of our platform.
Providing customized information to you.
Confirming or invoicing purchases of our products.
For information verification purposes.
4. Access Rights and Ensuring Accuracy

We endeavour to ensure personal information is reliable, accurate, and up-to-date.

You may access your personal information, to update, and correct inaccuracies by email request (as long as your account is active).

You may limit the use and disclosure of your information by unsubscribing from marketing communications or contacting us at [email protected]

Some information may remain in our records even after you request deletion of your information, for example, if required by relevant legal authorities.

There may be limits to the amount of information we can practically provide about personal information that we store, due to cost, or others’ privacy rights.

5. Sharing Personal Information

We do not expect to work with any service providers that will handle our clients’ personal data. If we did work with any such service providers in the future, we would require them to treat personal information as confidential, and not for their own marketing purposes.

There could be instances when we disclose your personal information without providing you with a choice, in order to comply with the law or in response to a court order, government request, or other legal process; to protect the interests, rights or safety of Thunder Said Energy or others; or respond to adverse third parties in the context of litigation. But we consider this unlikely.

Should Thunder Said Energy establish future subsidiaries or affiliate companies in the future, controlled by the management of Thunder Said Energy, then we may disclose personal information “internally” to these subsidiaries or affiliate companies.

Generally, we will not transfer personal data to third parties of affiliates where Thunder Said Energy’s management team does not control it.

If Thunder Said Energy sells all or part of its business, or is involved in a merger, you agree that we may transfer your personal information as part of that transaction.

If you provide comments on Thunder Said Energy on a social media or other public platform, you should be aware that the information provided there will be broadly available to others to see, and could be used to contact you. We are not responsible for any information you choose to submit on these forums or their consequences.

6. Security of Personal Information

We take reasonable and appropriate steps to ensure the security of your personal information. Physical, administrative, and technical safeguards are in place to help protect personal information.

7. Retention of Personal Information

We will retain your personal information as needed to fulfill the purposes for which it was collected, and to comply with our business requirements.

Typically, we will retain your name and contact details for the duration of our relationship with you, as a client or prospective client of Thunder Said Energy. Any data collected for analytics purposes is retained for a shorter time, while we are carrying out the relevant analytics.

8. Cookies

A cookie is a text file, created when your browser visits a particular website. Every time you visit our website, your browser queries for and retrieves any cookies that have previously been set. Cookies should enhance the user’s website experience, including authentication, storing your preference and personalizing the website’s appearance.

The cookies Thunder Said Energy collects may include the following: a unique identifier, user preferences, and profile information used to personalize the content shown.

As far as Thunder Said Energy is aware, all cookies used on its website are industry-standard, such as those used by Google Analytics; and we have not knowingly added any specific cookies of our own.

We may collect the physical location of your device, with your consent, for purposes consistent with this Privacy Policy.

Some web browsers permit you to broadcast a preference that you not be “tracked” online. We do not actively modify your experience based upon such a signal.

We do not participate in interest based advertising.

9. Cross Border Transfer of Personal Information

Thunder Said Energy aims to minimise the the cross-border transfer of personal information. However, our company is based in the United States of America (USA). Thus, if you are not based in the USA, and you enter personal information into our website, then you agree for the information to be transferred into the USA.

By using our website, or providing any personal information to us, you consent to the transfer, processing, and storage or such information outside of your country of residence.

10. Prospective Employees and Employee Information

If you submit an application for employment to Thunder Said Energy, we may collect and store any relevant information you disclose to us in your application.

Information on employees or prospective employees (“Employee Information”) will be used for legitimate business purposes, to evaluate applications, manage the employee-employer relationship and comply with applicable laws and regulations.

We may disclose your Employee Information if required or permitted to do so by law (such as when part of a governmental agency action or litigation), governmental or quasi-governmental requests, or a regulatory organization, or to relevant third parties such as site technicians, auditors, lawyers, or professional advisors.

We will not intentionally communicate or make available to the general public in any manner, employees’ sensitive details, such as social security numbers.

We may share Employee Information with third parties who provide outsourced human resource functions. Those third parties will be required to protect Employee Information.

11. EU General Data Protection Regulation

The Thunder Said Energy Policy for the Processing of Data Governed by GDPR addresses our commitment to the processing of personal data under the EU General Data Protection Regulation 2016/679.

If you are located in the European Economic Area (“EEA”) or Switzerland, you have the rights to request the following:

To request confirmation of whether we process personal data relating to you
To request confirmation of what personal data we process relating to you
To request that we rectify or update any personal data relating to you that is inaccurate, incomplete or outdated.
To request that we erase your personal data ,or that we no longer have your consent to process your personal data
To request that we restrict the use of your personal data
You may contact us at [email protected] to exercise any of these rights described above. You also have the right to lodge a complaint with your country’s data protection supervisory authority.

12. Other Contractual Relationships

If you enter into a separate contractual relationship us, which requires collecting, using, or sharing information about you in a different manner than described in this Privacy Policy, the terms of that agreement will apply.

13. Other Websites

This Privacy Policy does not apply to sites or services offered by other companies or third parties, that may be displayed as content or linked on our website.

14. Contact Information

If you have any questions or concerns related to this Privacy Policy, please contact the us at [email protected]

Updated 2nd April, 2019.

Thunder Said Energy Policy for the Processing of Data Governed by GDPR

Thunder Said Energy may collect, process or handle Personal Data relating to its customers or prospective customers (“customers”) in the European Economic Area (“Personal Data”).

Thunder Said Energy’s relationship with its customers is governed by our terms of use (above), privacy policy (above), and potentially other commercial agreements. It is also legally bound under the EU General Data Protection Regulation 2016/679 (“GDPR”) in its collection, uses, and processes around Personal Data.

This Policy describes Thunder Said Energy’s commitment to the processing of Personal Data under the GDPR.

Please contact [email protected] if you would like an executed version of this Policy, or for answers to any GDPR queries arising from thie policy.

1. Appropriate Technical and Organizational Measures. When Thunder Said Energy processes Personal Data on behalf of a customer, appropriate technical and organizational measures satisfy the requirements of GDPR, to ensure the security of Personal Data is appropriate to the level of risk, and to help ensure protection of the rights of the data subject.

2. Subprocessing. Thunder Said Energy does not currently work with any subprocessors. If we were to do so in the future, subprocessors would be required to provide at least the same level of protection as is described in this Policy. Thunder Said Energy would remain liable to its customers for any actions by its subprocessors that impact any rights guaranteed under the GDPR.

3. Written Instructions. Thunder Said Energy only processes Personal Data in accordance with the terms set out in this Policy, its Privacy Policy (above) and other written terms agreed with its subscribing customer. These documents set out the subject-matter, duration, nature, purpose, types of Personal Data, categories, obligations and rights relating to such Personal Data.

4. Transfers to non-EEA Countries. Most of the Personal Data collected by Thunder Said Energy will be collected via its US-website. Where Personal Data are disclosd Thunder Said employees in the EEA, they may be transferred to Thunder Said Energy’s office in Connecticut, United States. Every effort will be made to ensure the transfer is fully secure. Personal data is not expected to be transmitted to other destinations, beyond the United States and EEA.

5. Confidentiality. Thunder Said Energy requires that its employees process Personal Data under appropriate obligations of confidentiality.

6. Cooperation Concerning Data Subjects. Thunder Said Energy cooperates with reasonable requests of its customers (at the customer’s reasonable expense) to help them fulfill their obligations under GDPR to respond to requests by data subjects to access, modify, rectify, or remove their Personal Data.

7. Cooperation Concerning Customer Documentation. Thunder Said Energy cooperates with the reasonable requests of its customers to provide information necessary to demonstrate compliance with this Policy and the GDPR, or to conduct audits of the Personal Data it holds that was received from the customer. Audits may only occur once per calendar year, and during normal business hours. Audits will only occur after reasonable notice (not less than 30 business days). Audits will be conducted by customer or an appropriate independent auditor appointed (not by a competitor). Audits may not have any adverse impact on Thunder Said Energy’s normal business operations. Auditors shall not have access to any proprietary or third party information or data. Any records, data or information accessed by the Company and/or its representatives in the performance of any such audit will be deemed to be the confidential information of Thunder Said Energy, as applicable, and may be used for no other reason than to assess compliance with the terms of this Policy. Thunder Said Energy shall be entitled to charge the Customer USD500 per hour for any hours of its employees’ time that is taken up in the audit.

8. Personal Data Breach. In the event of a Personal Data breach under GDPR, Thunder Said Energy will notify its applicable customers without undue delay after becoming aware of the breach. Such notification(s) may be delivered to an email address provided by Customer or by direct communication (for example, by phone call or in-person). The customer is responsible for ensuring any email address provided by them is current and valid. Thunder Said Energy will take reasonable steps to provide information reasonably required.

9. Deletion of Data. Thunder Said Energy will delete or return all Personal Data to a customer, following the termination of the customer’s relationship, unless it is required to retain it by applicable laws and compliance policies. Thunder Said Energy reserves the right to charge a reasonable fee to comply with any customer’s request to return Personal Data.

10. Governing Law. This Policy shall be governed by the governing law (and subject to the jurisdiction(s)) of the relevant Agreement and otherwise subject to the limitations and remedies expressly set out in the Agreement.
If you have any queries about this Policy please contact [email protected]

Lost in the Forest?

In 2019, Shell pledged $300M of new investment into forestry. TOTAL, BP and Eni are also pursuing similar schemes. But can they move the needle for CO2? In order to answer this question, we have tabulated our ‘top five’ facts about forestry. We think Oil Majors may drive the energy transition most effectively via developing better energy technologies in their portfolios.


Please log in to view this content