Does Technology Drive Returns?

Technology drives 30-60% of energy companies’ return on capital. This is our conclusion after correlating 10 energy companies’ ROACEs against 3,000 patent filings. Above average technologies are necessary to generate above-average returns.


For the first time, we have been able to test the relationship between oil companies’ technical abilities and their Returns on Average Capital Employed (ROACE).

In the past, technical capabilities have been difficult to quantify, hence this crucial dimension has been overlooked by economic analysis in the energy sector.

Our new methodology stems from our database of 3,043 patents, filed by the Top 25 leading energy companies in 2018. The data cover upstream, downstream, chemicals and new energy technologies (chart below) . All the patents are further summarised, “scored” and classed across 40 sub-categories.

The methodology is to correlate our patent-scores for each company with the ROACE generated by the company in 2018. We ran these correlations at both the corporate level and the segment level…

Results: patent filings predict returns

Patent filings predict corporate returns. In 2018, the average of the Top 10 Integrated Oil Majors generated a Return on Average Capital Employed (ROACE) of 11%, based on our adjusted, apples-to-apples calculation methodology. These returns are 54% correlated with the number of patents filed by each Major (chart below).

Technology leaders are implied to earn c5% higher corporate returns than those deploying industry-average technologies, which is a factor of 2x.

Upstream patent filings also predict upstream returns, with an 85% correlation coefficient. The data are skewed by one Middle East NOC, which earns exceptionally high returns on capital, but even excluding this datapoint, the correlation coefficient is 65% (chart below).

The curve is relatively flat, with the exception of two outliers, implying that it is hardest to improve general upstream returns using technology. This may be because upstream portfolios are vast, spanning many different asset-types and geographies.

Downstream patent filings predict downstream returns, with an 80% correlation coefficient (chart below). However, our sample size is smaller, as we were unable to dis-aggregate downstream ROACE for all the Majors.

The curve is very steep, indicating that downstream technology leaders can surpass c20% returns on capital, versus c10% using industry-standard technologies.

Chemical patent filings predict chemical returns, with a 57% correlation coefficient (chart below). Again, our sample size is smaller, as we could only estimate chemicals ROACEs for some of the Majors.

The curve is also steep, with technology leaders earning c10-20% returns, versus low single digit returns for less differentiated players.

Overall, the results should matter for investors in the energy sector, for capital allocation within corporates, and for weighing up the benefits of in-house R&D. We would be delighted to discuss the underlying data with you in more detail.

New Risers for pre-salt Brazil?

Petrobras has patented next-generation riser designs, to handle sour-service crude from pre-salt Brazil. This is needed after prior cases of riser-failure, e.g., at Lula. Its new solution could also support development of higher-CO2 fields, such as Libra. But complexity is an order of magnitude higher. A simpler alternative is the growing potential from thermo-plastic composite pipe, which resists corrosion and is 45% more economical than conventional risers.

Please log in to view this content

De-Carbonising Cars. Can Oxy-Combustion Save Gasoline?

We are positive on the opportunity to de-carbonise gas-fired power generation using next-generation combustion technologies, such as oxy-combustion, which is reviewed in our deep-dive note, ‘Decarbonising Carbon‘. Could the same technology be used in automobiles? It is more difficult. But the world’s largest oil company is nevertheless trying.

Please log in to view this content

We conclude there is strong potential to de-carbonise gas-fired power generation with next-generation combustion technologies. But de-carbonising oil-fired automobiles may be most readily accomplished by electrification, i.e., substituting in smaller, more-specialised electric alternatives.

Source: Hamad, E. Z. & Al-Sadat, W. I. (2013). Apparatus and Method for Oxy-Combustion of Fuels in Internal Combustion Engines. Saudi Aramco Patent WO2013142469A1.

Source 2: Ben-Mansour, H., Habib, M., Jamal, A. (2017). Gas-Assisted Liquid Fuel Oxygen Reactor. Saudi Aramco Patent US2017284661 

Permian CO2-EOR: pushing the boundary?

We see enormous opportunity from CO2-EOR in the Permian. It can double well productivity, generate 15-20% IRRs (at $50 oil) and uplift production potential from the basin by 2.5Mbpd. The mechanism and economics are covered in detail in our deep-dive note, Shale-EOR, Container Class.

But what is happening at the leading edge, as companies try to seize the opportunity?

To deploy CO2-EOR, operators must be confident in the technology. It must be predictable, with well-calibrated models informed by field-tests and laboratory studies.

Excitingly, Occidental Petroleum is developing such models. Its laboratory analysis into CO2-EOR has been published in a new SPE paper, in partnership with CoreLabs.

Oxy is at the forefront of CO2-EOR, according to our screening of patents and technical papers. It has conducted 4 x field trials, with further ambitions to lower decline rates from 2020 and drive value through its Anadarko acquisition.

This note profiles our top five findings from Oxy’s recent technical paper. CO2-EOR’s deployment is supported.

(1) CO2 was found to be “the best solvent” for huff’n’puff in the Permian, after laboratory-testing Wolfcamp cores, with CO2, methane and field gas. Under simulated reservoir conditions, around 3,600psi, bubbles of CO2 immediately began dissolving into the oil, helping to mobilise it.

(2) CO2 swelled the oil by 15-76% under the reservoir conditions tested in the study (below, right). Swollen oil is more likely to dissociate from the reservoir rock and flow into the well.

(3) Accurate ‘Equation of State’ models have been developed, matching the pressure, viscosity and well data from the laboratory study.

(4) Multiple Cycles. Huff’n’puff works by sequentially ‘huffing’ gas into a depleted shale well to entrain residual oil, then ‘puffing’ back the mixture of gas and oil. Ideally, this cycle can be repeated multiple times, recovering more oil each time (illustration below). Oxy’s laboratory study continued recovering material volumes of oil over six cycles. Lighter fractions were recovered in earlier cycles, followed by heavier fractions in later cycles. The authors concluded: “The multi-cycle incremental recovery – even at the small core plug scale – suggests the significant potential for multiple HnP EOR cycles for a future unconventional EOR project design”.

(5) Huge Recovery Factors. What slowed the eventual recovery of oil in the study was the high volume of oil already recovered. Initially, these shale samples contained 10.3% oil (as a percentage of the initial pore volume). By the end of the huff’n’puff trial, they contained just 2.4%, implying c77% of the oil had been drained: an incredibly high number, when compared with c 8-10% recovery factors in most analyst models. The result matches other lab tests we have seen in the technical literature (chart below). The field-scale implications of these studies are discussed in our deep-dive research.

Source: Liu, S., Sahni, V., Tan, J., Beckett, D. & Vo, T. (2019). Laboratory Investigation of EOR Techniques for Organic Rich Shales in the Permian Basin. SPE.

Robot delivery: Unbelievable fuel economy…

Stand on a street corner in Tallinn, in the summer of 2019, and you might encounter the scene below: not one, but two autonomous delivery robots, comfortably passing one-another.

The fuel economy of these small electric machines is truly transformational, around 100x better than a typical motorcycle (the trusty workhorse of take-aways past), around 200x better than a typical car and around 400x better than a typical pick-up.

Large implications follow for energy supply and demand, if such delivery-robots take off…

Please log in to view this content

Our conclusion is to have found further evidence that transportation technology is evolving. Forward thinking energy companies will be preparing for the change, as evidenced by their patents, their projects and their venturing.

Shale: restoring downstream balance? New opportunities in ethylene and diesel.

We have all heard the criticism that shale oil is “too light”, so its ascent will create a surplus of natural gas liquids and a shortage of heavier distillates. Less discussed is the opportunity in this imbalance. Hence this note highlights one such opportunity, based on an intriguing patent from Chevron, which could convert ethylene into diesel and jet fuel, to maximise value as its shale business ramps up.


Please log in to view this content

Conclusions and Further Work?

Shale’s light product slate may create opportunities for integrated companies. Chevron’s ethylene-to-diesel patents are one example. But we have also seen a surprising uptick among other Oil Majors in patent filings for GTL, for oxidative coupling of methane and for a process to convert C3-4s into gasoline and diesel range molecules.

Our positive outlook on shale is best illustrated by our deep-dive note, Winner Takes All, but also be recent work focusing on the emerging opportunities with Fibre-Optic Sensing and Shale-EOR.

Can we help? If you would like to register any interest in the topics above, to guide our further work, then please don’t hesitate to contact us.

Shell drives LNG in transport?

Shell is the leading Major in driving new LNG demand, based on patent filings (chart above). As an example, we highlight a leading new technology to promote LNG demand in transportation, by mitigating the problem of boil-off.


Please log in to view this content

Greenfield LNG: Does Exxon have an edge?

Harnessing better technologies tends to unlock better returns, for large-scale capital projects in a commodity industry.

Hence this 7-page note evaluates ExxonMobil’s technologies for constructing greenfield LNG plants, particularly in remote geographies. Its technical leadership stands out from our analysis of 3,000 patents across the industry. This matters as Exxon progresses new LNG investments in Mozambique, PNG and the US.

Opportunities should arise for investors in Exxon’s LNG projects, and for its partners, resource-owners and other stakeholders to maximise value.

Lost in the Forest?

In 2019, Shell pledged $300M of new investment into forestry. TOTAL, BP and Eni are also pursuing similar schemes. But can they move the needle for CO2? In order to answer this question, we have tabulated our ‘top five’ facts about forestry. We think Oil Majors may drive the energy transition most effectively via developing better energy technologies in their portfolios.


Please log in to view this content

Good Batteries vs Bad Batteries?

We define a “good battery” as one that enhances the efficiency of the total energy system. Conversely, a “bad battery” diminishes it. This distinction matters and must not be overlooked in the world’s quest for cleaner energy. Electric Vehicles are most favoured, while grid-scale hydrogen is questioned.


Please log in to view this content