Energy transition companies?

Companies that have popped up in our research sorted by category.

This database contains a record of every company that has ever been mentioned across Thunder Said Energy’s energy transition research, as a useful reference for TSE’s clients. The database summarizes 2,500 mentions of 1,500 energy transition companies, their size, focus and a summary of our key conclusions, plus links to further research.


Our research library has become quite large, with over 1,400 research notes, data-files and models in the TSE research portal, since we started Thunder Said Energy in 2019. Hence the purpose of this data-file, which is only available to TSE’s full subscription clients, is to summarize all of the mentions of all of the companies, across all of our work.

For example, if a decision-maker is looking for information about ABC-Industries, and its linkage with energy transition, then a summary of key observations about ABC-Industries will be noted on the LongList tab, and all of the underlying mentions of ABC-Industries across different research notes can be filtered on the ‘Mentions’ tab, including links. Our methodology is described in the recent research note here.

Having a long list of energy transition companies, in a single database, also enables some interesting analytics, into the Very Hungry Caterpillar of companies in the world’s fast-evolving global energy and industrial landscape, amidst the transition to net zero.

Companies in our research by their amount of employees and starting year

The geographies that are most represented in our database of energy transition companies include the US (over 500 companies, 38% of the companies, 36% of the mentions), Europe (420 companies, 30%, 36%), China (115, 8%, 8%), Canada (95, 7%, 7%), Japan (70, 5%, 5%), Australia (36, 3%, 2%), Korea (35, 3%, 2%). And counting.

Companies in our research by geography

Zooming in a little further, there are 250 companies that have come up repeatedly in TSE research, or where we have conducted more in-depth work, across 8 sectors and 50 sub-sectors. 50 were CleanTech companies, of which 75% tended to private, and the remaining 25% were small-cap or mid-cap companies (chart below).

Other segments. 70 are capital goods companies, 30 are materials companies, and other heavily discussed industries in our research are energy, mining and semiconductors, ranging from small-privates to mega-cap giants.

Companies in our research by their business segment

Zooming in even further, there are 50 companies that have come up at least 6 times in TSE’s thematic research, which is focused on opportunities, themes and bottlenecks in the world’s transition towards net zero. These warrant a closer look.

For example, In 2021-22, we became obsessed with the idea that power electronic switchgear would increasingly be needed to help electricity scale up from 40% to 60% of the worldโ€™s energy system by 2050, save energy โ€“ from variable frequency drives to power factor management โ€“ and to accommodate more volatility in renewable-heavy grids. Thus the company we wrote most about in 2021-22 was Eaton. Which subsequently doubled.

Hence we have started a new quarterly series of research reports and updates to this database, simply noting the companies that have featured most prevalently in our research over the trailing several months, and since the inception of TSE, as a useful summary for decision-makers who have not necessarily been able to read 100% of our output, and may wish to dig deeper into these companies as part of their own processes. The latest instalment covers our energy transition conclusions in 2Q24. In 3Q24 we have also evaluated vehicle value chains.

The data-file is exclusively available to TSE subscription clients. Any purchases of the data-file will be automatically converted into a TSE full subscription. And we will continue updating the database over time.

Market concentration by industry in the energy transition?

Market concentration by industry

What is the market concentration by industry in energy, mining, materials, semiconductors, capital goods and other sectors that matter in the energy transition? The top five firms tend to control 45% of their respective markets, yielding a โ€˜Herfindahl Hirschman Indexโ€™ (HHI) of 700.


This data-file compiles market concentration data across 30 company screens that we have built to-date, across our energy transition research. Specifically, we know the market share of different companies based on these screens.

A useful rule of thumb across the data-set is that the top five firms tend to control 45% of their respective markets, ranging from 20% in the least concentrated industries to 100% in the most concentrated.

The average โ€˜Herfindahl Hirschman Indexโ€™ (HHI) of energy, materials and manufacturing sectors is 700, varying from 200 in the least concentrated industries to 4,000 in the most concentrated ones.

Does market concentration determine profitability? 50% correlations are found between concentration and operating margins over the cycle within these industries.

Energy sectors covered in the database of market concentration by industry include global LNG, US E&P, US refining, Western coal, LNG shipping. Mining sectors covered include aluminium, copper, cobalt, lithium, nickel, uranium, silica and silver.

Market concentration by industry
Correlation between market concentration and operating margins in energy and mining

Materials and manufacturing sectors covered in the data-file include ASUs, autos, battery binders, carbon fiber, gas turbines, glass fiber, hydrogen, methanol, mining equipment, polyurethanes, vacuum pumps, VFDs, wind turbines, and different grades of semiconductors.

Market concentration by industry
Correlation between market concentration and operating margins in materials, manufacturing and semiconductors

Energy and mining are less concentrated than materials, capital goods and semi-conductors, in-line with the idea they are โ€˜commoditiesโ€™.  

The data-file also covers market size, which itself correlates both with market concentrations and profitability structures. Although we also maintain a larger database for market sizing in the energy transition.

Market concentration matters for decision makers in the energy transition. Hence we have written a research report spelling out seven useful rules of thumb that are based on this data-file. We will continue expanding the data-file over time for TSE clients.

Biofuel technologies: an overview?

Biofuel technologies overview

This data-file provides an overview of the 3.5Mbpd global biofuels industry, across its main components: corn ethanol, sugarcane ethanol, vegetable oils, palm oil, waste oils (renewable diesel), cellulosic biomass, algal biofuels, biogas and landfill gas.


For each biofuel technology, we describe the production process, advantages and drawbacks; plus we quantify the market size, typical costs, CO2 intensities and yields per acre.

While biofuels can be lower carbon than fossil fuels, they are not zero-carbon, hence continued progress is needed to improve both their economics and their process-efficiencies.

Our long-term estimate is that the total biofuels market could reach 20Mboed (chart below),ย however this would require another 100M acres of land and oil prices would need to rise to $125/bbl to justify this switch.

The data-file also contains an overview of sustainable aviation fuels, summarizing the opportunity set, then estimating the costs and CO2 intensities of different options.

Vehicles: energy transition conclusions?

Vehicles energy transition research

Vehicles transport people and freight around the world, explaining 70% of global oil demand, 30% of global energy use, 20% of global CO2e emissions. This overview summarizes all of our research into vehicles, and key conclusions for the energy transition.

Electrification is a revolution for small vehicles, a mega-trend of the 21st century. We also believe that large and long-range transportation will remain predominantly combustion-fueled due to unrivalled energy density and practicality. It is most cost-effectively decarbonized via promoting efficiency gains, lower-carbon fuels and CO2 removals.


(1) Electrification is a game changer for light-vehicles, with 3-5x greater fuel economy than combustion vehicles (database here), due to inexorable thermodynamic differences between electric motors and heat engines (overview note here).

(2) Electric vehicle technology continues to improve, in an early innings, with multi-decade running room, which makes it an interesting area for decision makers to explore. We have profiled axial flux motors, which promise 2-3x higher power densities, even versus Tesla’s world-leading PMSRMs while surpassing 96% efficiencies (note here). And SiC power electronics that unlock faster and more efficient switching in the power MOSFETs underlying EV traction inverters.

(3) New and world-changing vehicle types will also be unlocked by electric motors’ greater compactness, simplicity and controllability. e-mobility provides an example with the lowest energy costs per passenger on our chart above. Albeit futuristic, we have also written on opportunities in aerial vehicles, drones and droids, robotics, airships, military technologies, inspection technologies.

(4) EV Charging. Each 1,000 EVs will ultimately require 40 Level 2 (30-40kW) and 3.5 Level 3 (100+ kW) chargers (NREL estimates). But we wonder if EV charging infrastructures will ultimately get overbuilt (for reasons in our note here). Is there a moat in the patents of EV charging specialists, such as Chargepoint? Or Nio? As a result, we are particularly excited by the shovel-makers, the suppliers of materials and electronic components, that will feed into chargers, especially fast chargers. Granular costs of EV chargers are modelled here, and can be compared with the 17c/gallon net margins of conventional fuel retail stations here. An amazing statistic is that a conventional fuel pump dispenses 100x more fuel per minute than a 150kW fast-charger, and we wonder if fast-chargers will stoke demand for CHPs (note here).

(5) Large vehicles that cover large distances face different constraints. For example, once the battery in a heavy truck surpasses 8 tons, yielding c50% of the range of a diesel truck, then additional battery weight starts eating into cargo capacity (data here). And the range of a purely battery powered plane is currently around 90km (data here).

(5a) For trucks, an excellent data-file comparing diesel, LNG, CNG, LPG and H2 fuelling is here. There may be some niche deployments of electric trucks and hydrogen trucks. But we think the majority of long distance, inter-continental trucking will remain powered by liquid fuels, i.e., oil products. Although they may improve efficiency by hybridizing (energy saving data here), including using super-capacitors (note here).

(6) Economies of scale. Larger vessels, which carry more passengers and more freight are inherently more energy efficient. This is visible in the title chart. And we have modelled the economics of container ships, bulk carriers, LNG shipping, commercial aviation, mine trucks, electric railways, pipelines and other offshore vessels.

(7) Light-weighting also improves fuel economy, as energy consumption is a linear function of mass, and replacing 10% of a vehicle’s steel with carbon fiber can improve fuel economy by 16% (vehicle masses are built up here). Polymers research here. This can be compared with typical vehicle manufacturing costs.

(8) Automating vehicles can also make them 15-35% more efficient (note here), although we also wonder whether the improved convenience would also result in more demand for long-distance road travel…

(9) Changing demand patterns? Autos are c95% of <500-mile trips today, planes are c90% of >1,000-mile trips; while long distance travel is c50% leisure and visiting friends (data here). Travel demand correlates with income across all categories (data here). Travel speeds have also improved by over 100x since pre-industrial times (excellent data here, breaking down travel by purpose, vehicle and demographics). We estimate the distribution chain for the typical US consumer costs 1.5bbls of fuel, 600kg of CO2 and $1,000 per annum, across container ships, railways, trucks, delivery vans and cars (data here). But displacing travel demand delivers the deepest reductions of all, in the energy intensity of transportation. Thus we would also consider remote work (note here), digitization (category here), traffic optimization and recycling (here) together with vehicle efficiency technologies. They are all related. But as always, there are good debates to be had about future energy demand and fears over Jevons Paradox.

(10) Hydrogen vehicles. Despite looking for opportunities in hydrogen vehicles and e-fuels, we think there may be more exciting decarbonization opportunities elsewhere: due to higher costs, high energy penalties and challenging practicalities. This follows notes into hydrogen trucks; and data-files into Goldilocks-like fuel cells and hydrogen fuelling stations. A summary of all of our hydrogen research is linked here.

The data-file linked below summarizes all of our research to-date into vehicles, which follows below in chronological order. Note that we have generally shown energy use on a wagon-to-wheel basis and assume 2.0 passengers per passenger vehicle. You can stress test all of the different inputs ($/gal fuel, c/kWh electricity, $/kg hydrogen) in the data-file. Other excellent comparison files are here (EVs vs ICEs, ICEs vs H2 vehicles, diesel vs LNG vs H2 trucks). We have also published similar overviews for our research into batteries, electrification, battery metals and other important materials in the energy transition.

Carbon capture and storage: research conclusions?

Carbon capture and storage (CCS) prevents CO2 from entering the atmosphere. Options include the amine process, blue hydrogen, novel combustion technologies and cutting edge sorbents and membranes. Total CCS costs range from $80-130/ton, while blue value chains seem to be accelerating rapidly in the US. This article summarizes the top conclusions from our carbon capture and storage research.


What is carbon capture and storage? CO2 is a greenhouse gas. But it is also an inevitable product of many energy-releasing reactions, from biology, to materials, to industrial energy, because of the high enthalpy of the C=O bond, at 1,072 kJ/mol. Carbon capture and storage technologies therefore aim to capture unavoidable CO2, purify it, transport it, and sequester it, to prevent it from contributing to climate change.

What are the costs of carbon capture and storage? 10-20% of all decarbonization in our roadmap to net zero will come from CCS, with the limit set by economic costs, ranging from $80-130/ton on today’s technologies, which is towards the upper end of what is affordable. Costs vary by CO2 concentration, by industry, by process unit, but will hopefully be deflated by emerging technologies.

Amines are the incumbent technology among 40MTpa of past carbon capture and storage projects, bubbling CO2-containing exhaust gases through an absorber column of lean amines, which react with CO2 to form rich amines. The CO2 can later be re-released and concentrated by steam-treating the amines in a regenerator. Base case costs are $40-50/ton to absorb the CO2 (model here). Energy costs range from 2.5-3.7GJ/ton. Energy penalties are 15-45% (note here). But a possible operational show-stopper is the emissions of amines and toxic degradation products (note here), with MEA breaking down at 1.75 kg/ton into a nasty soup (data here). Avoiding amine degradation is crucial and usually requires treatment of exhaust gases, to remove dusts, SO2, NOXs, a post-wash and limits on the ramp rates of power plants. This all adds costs.

Leading amines for CCS, which have been de-risked by use in multiple world-scale projects are MHI KS-1/KS-21 and Shell CANSOLV. We have also screened novel amines developed by Aker Carbon Capture (JustCatch), Advantage Energy (Entropy) and Carbon Clean. And alternatives to amines such as potassium carbonates. In our view, this space holds exciting potential, although decision-makers should consider the correct baselines, hidden costs and technology risks.

Blue hydrogen is an alternative to post-combustion CCS, directly converting the methane molecule (CH4) into relatively pure streams of H2, as an energy carrier or feedstock, and CO2 as a waste product for disposal. The two gases are separated via swing adsorption. The technology is mature, there are no issues with toxic emissions, and the world already produces 110MTpa of grey hydrogen, including 10MTpa in the US (data here), mostly via SMRs, emitting 9 tons of CO2 per ton of H2. 60% of the CO2 from an SMR is highly concentrated, and can readily be captured. An adapted design, ATR, can capture over 90% of the CO2 and is also technically mature (note here). Our economic model for blue hydrogen is here. An ATR technology leader is Topsoe.

Blue materials. The US seems to be leading in CCS, over 500MTpa of projects could proceed in the next decade (note here), and 45Q reforms under the Inflation Reduction Act are already kickstarting a boom in blue value chains, from blue ammonia, to blue steel, to blue chemicals. This exciting theme is gathering momentum at a fast pace and could even disrupt global gas balances and LNG exports (note here).

Novel combustion technologies are also maturing rapidly, which may facilitate CCS without amines. NET Power has developed a breakthrough power generation technology, combusting natural gas and pure oxygen in an atmosphere of pure CO2. Thus the combustion products are a pure mix of CO2 and H2O. The CO2 can easily be sequestered, yielding CO2 intensity of 0.04-0.08 kg/kWh, 98-99% below the current US power grid. Costs are 6-8c/kWh (note here, model here). We have also explored similar concepts ranging from chemical looping combustion to molten carbonate fuel cells and solid oxide fuel cells.

Transporting CO2 usually costs $4/ton/100km in a pipeline (model here). But CO2 is a strange gas to compress (note here). CO2 pipelines run above 100-bar, where CO2 becomes super-critical and behaves more like a liquid (e.g., it can be pumped). CO2 can also be liquefied 80% more easily than other gases, for a cost of $15/ton, merely by pressurizing it above 5.2-bar then chilling to -40C (model here). This opens up the possibility of trucking small-scale CO2 for c$17/ton per 100-miles (note here, model here). Similarly, seaborne transport of CO2 costs $8/ton/1,000-miles (model here), and this also opens up a possibility for the LNG industry to ship LNG out, CO2 back (note here). Ships could also capture their own CO2 with onboard CCS for $100/ton (note here).

CO2 disposal requires injecting CO2 into disposal wells at 60-120 bar of pressure. Our base case cost is $20/ton, but can vary from $5-50/ton (model here) and there can be risks (data here). CO2-EOR can re-coup costs of sequestration with an oil price around $50/bbl (note here, model here) and in the past we had hoped this would also drive a subsequent wave of low-carbon production via shale-EOR (note here).

CO2 utilization aims to make valuable use of the CO2 molecules rather than simply pumping them into the ground. Enhancing the concentration of CO2 in greenhouses can improve agricultural yields by c30% (note here). Some chemical pathways use CO2 directly, making methanol, formaldehyde and polyurethanes. The CO2 molecule can also be electrolysed to produce other feedstocks, but costs are c$800/ton (model here). CO2 utilization for curing cement industry is being explored by Solidia and CarbonCure. Other CO2 utilization companies are screened here. The challenge in all of these niches is scaling up to absorb GTpa-scale CO2 within MTpa-scale supply chains.

Direct air capture is a frontier for CCS that aims to absorb CO2, not from an exhaust gas with 4-40% concentration, but from the atmosphere, with 0.04% concentration. On the one hand, this is obviously more thermodynamically demanding, as dictated by the entropy of mixing, but on the other hand, the minimum theoretical energy for DAC is only 140kWh/ton, and the world has simply not invented a process yet that is more than 5-10% thermodynamically efficient. We have modeled solutions from Carbon Engineering at c$300/ton and from Climeworks at c$1,000/ton. Our DAC cost model is here.

Membranes. Next-generation membranes could separate 95% of the CO2 in a flue gas, into 95% pure permeate, for a cost of $20/ton and an energy penalty below 10%, which exceeds the best amines (note here). But today’s costs are higher, especially for pipeline grade CO2 at 99% purity (model here). A CCS membrane leader is MTR (screened here).

Metal organic frameworks are a novel class of materials with high porosity and exceptional tunability, which could become a CCS game-changer, but cannot yet be de-risked (note here). We have screened companies such as Svante in our work.

Cryogenics. The costs to separate the 20% oxygen fraction from air in a cryogenic air separation unit average $100/ton using 300kWh/ton of electricity (model here). If you have a concentrated CO2 stream (e.g., 10-40%) then cryogenics may be an option.

Some summary charts, workings and data-points from our carbon capture and storage research are aggregated in this data-file. All of our broader CCS research is summarized on our CCS category pages.


Solar trackers: leading companies?

This data-file summarizes the leading companies in solar trackers, their pricing (in $/kW), operating margins (in %), company sizes, sales mixes and recent news flow. Five companies supply 70% of the market, which is worth $10bn pa, and increasingly gaining in importance?


The solar tracker industry is worth c$10bn pa, as 20 companies shipped 95GW of trackers in 2023, mostly single-axis horizontal systems.

It is a rare part of the solar supply chain, that is not dominated by Chinese suppliers – unlike PV silicon, or PV modules. The leading markets for deployment are the US and Europe, and this is also where many of the leading companies in solar trackers is based.

The solar tracker industry is concentrated. Five companies have c70% market share, helped by features that facilitate installation, and software to optimize the operations of utility-scale solar.

This data-file summarizes the leading companies in solar trackers, their pricing (in $/kW), operating margins (in %), company sizes, sales mixes and recent news flow.

The economics of solar trackers are also assessed, and can be stress-tested in the data-file. 10% IRRs can be achieved on solar trackers costing $165/kW (installed basis) that uplift solar revenues by 25%, through a mixture of higher output and higher time-value.

Uplifts in performance can be determined top-down using reported performance of solar trackers, or bottom up from first principles, based on calculating solar insolation.

IRRs reach 20-30% of the best systems, which is tantamount to lowering solar LCOEs by 2c/kWh, when flowed through our model of utility-scale solar economics.

Hence as one of the leaders, Array Technologies, has highlighted, solar tracker demand has been growing 30% faster than the overall solar market in recent years.

Global vehicle sales by manufacturer?

Global vehicle sales by manufacturer are broken down in this screen. 20 companies produce 85% of the world’s vehicles, led by Toyota, VW, Stellantis, GM and Ford. The data-file contains key numbers and notes on each company, including each company’s sales of BEVs, PHEVs, general EV strategy, and how it has been evolving in 2024.


Global vehicle sales by manufacturer are tabulated in this data-file. The entire global OEM industry produces 90M vehicles per year (see our vehicle sales database), at an average revenue of $30k per vehicle, for $2.5trn of total revenues (i.e., 2.5% of global GDP), across $2trn of market cap (2% of global total), while directly employing around 5M people.

Vehicle sales by the 20 largest manufacturers in the world from 2011 to 2023.

OEMs’ revenues average $30k per global vehicle sold and their gross profit averages $5k per vehicle sold. For luxury vehicles (e.g., BMW, Mercedes, Volvo, Land Rover), revenue per vehicle is closer to $55k and gross profit per vehicle can exceed $10k per vehicle. Details are in the file for each OEM (chart below).

Profits vs revenues per vehicle for different vehicle manufacturers by geography in 2023

Electric vehicle sales by manufacturer are also disaggregated for 9M BEVs and 4M PHEVs sold in 2023. BYD and Tesla together sold 40% of the world’s EVs, while the top 10 list accounts for 75% of EVs and also includes VW, Stellantis (due to the Fiat 500e and Peugeot e-208) and GM (due to the Chevy Bolt range).

2024 has seen weaker momentum for electric vehicles. GM pulled back on a target to produce 1M EVs per year by 2025 saying instead it would be “guided by the consumer”. Ford pivoted a new manufacturing plant in Canada away from EVs and back towards gasoline-powered pick-ups after its EV division made a loss of $100k per vehicle. In May-2024, Nissan delayed an expansion of EVs in North America. Mecedes-Benz said it needed a flexible approach to reflect “peaks and troughs” in EV momentum. In May-2024, even Tesla dropped a goal of producing 20M vehicles per year by 2030. In September-2024, Volvo abandoned a target to sell only electric cars by 2030.

Our take is that electric motors are superior to ICE engines in power, performance and vehicle emissions; but EV batteries are still inferior to hydrocarbons in energy density and vehicle cost implications.

Therefore context matters. And different OEMs need clear strategies that ramify into specific niches (e.g., clean urban mobility โ‰  pick-up trucks for Middle America โ‰  premium vehicles โ‰  low-cost all-purpose cars).

As an example, BMW is focused on luxury vehicles (not low-cost, mass-market EVs!!), and is thus adding bi-directional charging to its vehicles, and continuing with electrification ambitions; while many of Japan’s OEMs, such as Toyota, Honda, Suzuki, Mazda, Subaru partly due to challenged Japanese electricity markets, have limited their electrification strategies to hybrids, and are selling almost no BEVs.

However, uncertainties over the pace of EV adoption, the extent of policy support, and the ultimately winning EV technologies create a long-term challenge for the OEMs. At worst, there are risks of betting on the wrong horse, prioritizing dimensions that consumers will ultimately not accept, and getting distracted from what consumers actually will want; precisely at the time when China is gearing up in low-cost vehicle production helped by low-cost LFP batteries.

Metal organic frameworks: challenges and opportunities?

Metal organic frameworks (MOFs) are an exciting class of materials, which could reduce the energy penalties of CO2-separation by c80%, and reduce the cost of carbon capture to $20-40. This data-file screens companies developing metal organic frameworks, where activity has been accelerating rapidly, especially for CCS applications.


Sorbents are classes of materials that are useful for separating industrial mixtures, as they adsorb some compounds but not others. They can be disposed on specialized membranes, or in tanks, where compounds can be adsorbed and later desorbed by pressure swings.

Metal organic frameworks could be particularly useful for CCS or DAC. Today’s CCS and DAC processes are only 5-10% efficient, compared to their thermodynamic minimum energy, and we increasingly wonder whether AI engines can help develop sorbents with materially better performance. Hence, the number of patent filings into MOFs has been rising at an exponential pace, growing at 25% pa in the past decade.

Patent filings for MOF applications related to CO2 capture. From 2004 to 2023 the number of patents has grown by 25% per year.

The state space of metal organic frameworks is very large. MOFs were first described 20-years ago by US chemist Omar Yaghi. Over 40,000 MOFs had been identified mid-2018. Over 90,000 have been identified by 2021. The total state space reaches 10^16.

Metal organic frameworks can also be highly porous. Some fit the entire surface of a football field into a teaspoon of powder weighing less than 1 gram, e.g., 10,000 m2/g, which is c1,000x a typical zeolite.

The challenge is finding MOFs that are stable and water-resistant, then synthesizing them in continuous, mass-scale processes that do not require expensive solvents. In an earlier iteration of this data-file, we tabulated the challenges for MOFs, based on patent filings.

Technical challenges for metal organic frameworks

Costs of metal organic frameworks, for example, are in the range of $10-70/kg, which is 1-2 orders of magnitude more expensive than today’s commercial zeolites, such as 13X, which typically range from $1.5-3/kg (tabulated here). However, the high costs can be compensated by higher performance and porosity.

This data-file screens companies developing metal organic frameworks, based on their disclosures, news flow, patents and partnerships. Most are small, private companies, founded in the last decade. Yet momentum seems to be building, especially for using metal organic frameworks in CCS applications, most famously by Svante.

Recently, we have also screened exciting progress from Montana Technologies, using metal organic frameworks to lower the energy costs of air conditioning units by 50-75%.

Also included in this data-file are our notes from technical papers, and an economic model for MOF-based CCS, which can bridge to CO2 capture at around $40/ton, due to lower complexity and lower energy penalties than amine-based CCS. It has been quite nice to take this analysis back to first principles, including Langmuir Isotherms and MOF capture rates (tons of CO2 per kg of MOFs per year) as inputs.

Equilibrium loading of CO2 onto CALF-20 MOF

Full details on the different companies developing metal organic frameworks, and their underlying progress is in the data-file.

Leading PGM producers: mining, refining and recycling?

This data-file is a screen of leading PGM producers and recyclers. Eight companies control 90% of global production. Most are mid-caps. Four have primary listings in South Africa. Three are listed in Europe and the UK. Ore grades average 4 grams/ton, and recovery requires 60GWH/ton of energy, emitting 40kT/ton of CO2. But do recent company disclosures suggest that the gloom over PGMs is lifting?


This data-file is a screen of leading PGM producers, across mining, refining and recycling activities. We capture a dozen companies, whether they are public or private, their history, geography, number of employees, recent revenues, valuations, primary PGM production, secondary PGM production and interesting notes/disclosures.

PGM production is highly concentrated. 8 companies effectively control 90% of all global production. It is these leading PGM producers that are the focus in this data-file.

Further downstream, there is far more fragmentation. For example, auto catalysts are an $8bn pa market in the US alone, manufactured by 177 companies, none of which have market shares higher than 5%.

PGM production is complex. 55% of global mined output is from South Africa and 25% is from Russia. Implatsโ€™s Rustenburg mine is 870m underground. Ore grades average 4 grams/ton, hence huge quantities of rock must be excavated, crushed, concentrated, smelted at 1,500ยบC in electric arc furnaces, then electro-refined.

Based on the disclosures from large PGM producers, we estimate that the energy intensity of PGM production is around 60GWH/ton and the CO2 intensity of PGM production is around 40,000 tons/ton. This is even more than gold production.

More encouragingly, Johnson Matthey highlights that PGM recycling from spent catalytic converters can have 80% lower production costs, 80% lower energy use and up to 98% lower carbon footprints than primary mined PGMs.

Even the PGM industry has recently been downbeat over PGMs, with many companies diversifying into battery metals, as electric vehicles are seen displacing the need for PGMs within ICE catalytic converters (65% of the global PGM market today). Yet in 2023-24, as EVs have slowed down, these battery metal businesses have been profit-warning.

The work should be viewed alongside our recent note into the outlook for PGMs, and our models into long-term PGM demand.

Turbochargers: leading companies?

Revenues and exposures of top companies producing turbochargers.

Six leading companies in turbochargers control two-thirds of the $15-20bn pa global turbochargers market. 55% of ICE vehicles now have turbochargers, which can improve fuel economy by as much as 10%, by enabling smaller and better-utilized engines to achieve higher peak power ratings. What opportunities ahead, to adapt for vehicle electrification, or even if EV sales accelerate less than expected in 2025-30?


Turbochargers unlock higher power output from smaller, lighter, lower-friction and thus more efficient combustion engines, by compressing the air that enters the engine cylinders to 1.5-2 atmospheres, and thus increasing the overall quantity of oxygen burned alongside the fuel.

Turbochargers may be powered by expanding hot exhaust gases from the engine, thereby minimizing their energy costs. Or relatedly, superchargers may be electrically powered, by drawing from the low-voltage (e.g., 48V) power supply of a vehicle.

The key reason that turbochargers increase fuel economy is that most engines are inefficient under light loads, therefore it is more efficient to run a smaller engine at medium-high loads, than a larger engine at low loads. Some studies have quoted CO2 savings of up to 10% on turbocharged vehicles.

The global automotive turbocharger market has been estimated at $15-20bn, as 55% of light vehicles have turbochargers today. Individual units cost $100-10,000 depending on size. Including heavier commercial vehicles, ships, aircraft, agricultural and construction machinery, some studies estimate the total turbocharger market as $30-60bn pa.

Disadvantages of turbochargers are that higher pressures and temperatures in a vehicle engine increase the amount of wear, and raise complexity, including for circulating high-grade engine oil to remove the excess heat.

Leading companies in turbochargers? Six companies control about two-thirds of the global turbocharger market, based on our screen. Garrett Motion is most exposed, with turbochargers comprising over 80% of its business.

For those that enjoy special situations, Garrett is emerging from bankruptcy and the overhang of asbestos liabilities, Continental is spinning out its automotive division in 2024, Cummins was fined $1.7bn in 2023 for using defeat devices (and we have also reviewed Cummins recent patents), and IHI is working through a whistleblower accusation that it falsified data affecting 4,000 engines since 2003.

Electrification is cited as an opportunity? Across the peer group, many of the leading companies in turbochargers are expanding to supply pumps and compressors for heat pumps to provide coolant to EV batteries. BorgWarner notes that the content opportunity for light vehicles rises by almost 5x in a BEV. Likewise, Valeo which is most exposed to electrification of the suppliers in our screen is citing a “spectacular” growth opportunity from EVs, while also aiming to expand margins. This may not entirely augur for deflation in electric vehicles.

Leading companies in turbochargers and other engine technologies may also be impacted if electric vehicle sales accelerate more slowly in 2025-30, as discussed in our recent research into EV market saturation. Numbers and details on each company are in the data-file.

Copyright: Thunder Said Energy, 2019-2024.