Re-Frac Economics. How much uplift?

economics of re-fracturing shale wells

This model assesses the production-uplifts and well-level economics of re-fracturing shale wells in the Permian and the Eagle Ford, to improve recovery of previously missed pay. The opportunity is interesting but not quite game-changing.

Economic breakevens are seen at c$45/bbl under our base-case assumptions. The most likely NPV uplift is c$0.5M/well. However higher prices and process-enhancements can unlock $2-3M of NPV10 per well.

Input assumptions are informed by disclosures from Occidental and Devon Energy, the two E&Ps that dominate the technical literature. They are summarised in the ‘notes’ tab. Please download the file to stress-test the assumptions…

LNG as a Shipping Fuel: the Economics

LNG as a Shipping Fuel

This model provides line-by-line cost estimates for LNG as a shipping fuel, compared against diesel. We used industry data and academic studies to estimate the all-in costs for (a) trucking LNG (b) small-scale LNG and (c) LNG bunkering, to supply a relatively fuel-intensive shipping route.

After IMO 2020 regulations buoy diesel pricing, it should be economical to fuel newbuild ships with small-scale LNG; and in the US it should be economical to convert pre-existing ships to run on small-scale LNG.

Fast-charge the electric vehicles with gas?

Fast-charge the electric vehicles with gas

When electric vehicles are widespread, how will we fuel them? Our model shows the economics can be compelling for powering fast-chargers using gas turbines.


The electricity would cost 13c/kWh, at $3/mcf input gas (e.g., in the US), 20% utilisation of the infrastructure and a c7.5% pre-tax IRR.

Carbon emissions are lowered by c70% compared to oil-fired vehicles. And the grid is spared the strain of sudden demand surges.

Is upside suggested for gas? Utilisation of the fast-charging infrastructure is much more important to the overall economics than the gas price. This means that greater EV adoption can accommodate considerably higher gas prices.

Our model is constructed as a sensitivity analysis, based on economic data from gas turbines (chart below), so you can flex the assumptions.

Can technology revive offshore oil?

Can technology revive offshore oil

The appetite to invest in new offshore oil projects has been languishing, due to fears over the energy transition, a preference for share-buybacks, and intensifying competition from short-cycle shale. So can technology revive offshore and deep-water? This note outlines our ‘top twenty’ opportunities. They can double deep-water NPVs, add c4-5% to IRRs and improve oil price break-evens by $15-20/bbl.

Offshore Economics: the Impact of Technology

Can technology revive offshore oil

This data-file quantifies the impact that technology can have on offshore economics. We start with a 250-line field model, for a typical offshore oil and gas project. We then list our “top twenty” offshore technologies, which can improve the economics. In a third tab, we update our base case model, line-by-line, to reflect these twenty technologies. Finally, the “before” and the “after” are compared and contrasted.

Thermo-Plastic Composite: The Future of Risers?

cost of using Thermo Plastic Composite

We have estimated the costs of a subsea riser system, for a typical deep-water project; and the potential cost-reduction that can be achieved by using ThermoPlastic Composite Pipe instead (e.g., Airborne, Magma). Savings should be around c45%, or c$20M/riser. Our data-file also includes the order-history to-date for TCP: by project, operator, and geography (below).

Wind: aim higher?

how wind speeds harness power

This data-file contains a simple model for how wind speeds and wind power co-vary with altitude. 2x greater power could likely be harnessed by a kite at 300m than a similar-sized turbine at 80m.

Do “digital” completions lift Permian IRRs?

economic uplift of digital instrumentation on a Permian well

We have modelled the economic uplift of extra digital instrumentation on a typical Permian well. If the data can uplift production by 2.5%, then c$0.4M of instrumentation costs would “pay back” (i.e., break even). If the data can uplift production by 10%, it would add +$1M of NPV and +5% IRR per well. These numbers are all shown at $50/bbl, but you can flex the inputs in our model.

Eni Slurry Technology. A leader for IMO 2020?

Eni Slurry Technology

This data-file models the economics of Eni’s Slurry Technology, for hydro-converting heavy crudes and fuel oils into light products. It is among the top technologies we have reviewed for the arrival of IMO 2020 sulfur regulation, achieving >97% conversion of heavy fractions. The catalyst is stable and handles even ultra-heavy inputs. We see 10-20% IRRs at $20-40/bbl upgrading spreads. The data-file also summarises EST’s adoption in refineries to-date, future plans, and technical details of the EST process.

Costs of an LNG fuelling station

costs of constructing an LNG-fuelling station

We have tabulated the costs of constructing an LNG-fuelling station for road vehicles across 55 distinct cost-lines, based on data from a dozen sites in Europe. Total capex will average €1M/site. Effectively, this is a $250/tpa re-gasification plant. Overall, we estimate distributing LNG to road-consumers will add $10/mcf to the costs of gas-fuel. Around 30% of the capex costs are specifically linked to LNG, and could be slim-lined for a CNG-only fuelling station.

Copyright: Thunder Said Energy, 2019-2024.