Autonomous vehicles: where’s the IP?

This data-file quantifies the number of patents filed into autonomous vehicles, by year, by geography and by patent family, looking across 37,000 patent filings since  the year 2000. Patent activity has risen at a 27% CAGR over the past decade, indicating a rapid pace of research activity.

The leading patent filers are ranked, including some of the world’s leading automotive companies, tech companies and retail companies. It is interesting to compare the relative activity levels among companies such as Denso, MobilEye, TuSimple, Uber, Waymo and Zoox (recently acquired by Amazon), versus Ford, GM, Honda, Toyota, Volvo et al.

Our notes and a data-pull of all the underlying 2019 patents follow. We find autonomous vehicles could entrench a 10% acceleration in road travel post-COVID, and displace c15% of all air-miles on sub-1,000 mile journeys.

Coal-to-gas switching: the economics?

Switching coal- to gas-fired power generation is the single largest line-item in our models taking the energy system to net zero emissions and keeping atmospheric CO2 to below 450ppm. This model illustrates the economics.

Mathematically, the analysis works by deducting a model of a new coal-fired power plant from a model of a new gas-fired power plant, so you can easily stress-test the relative impacts of different coal prices, gas prices, CO2 prices, capex costs and efficiency factors.

CO2 prices accelerate coal-to-gas switching, under our base case, long-term pricing assumptions. For brownfield plants, which are already standing, a $10/ton CO2 price is required in the US, c$25/ton in Europe and c$40/ton in Emerging Markets. For greenfield plants, the US and Europe are already set to switch from coal to gas, due to relative capex costs, but in the emerging world, again a c$40/ton CO2 price is required.

CO2-Cured Concrete: Solidia vs traditional cement?

CO2-cured concrete has c60% lower emissions than traditional concrete, whichis the most widely used construction material on the planet, comprising 4bn tons of annual CO2 emissions, or 8% of the global total.

This data-file profiles Solidia’s industry-redefining product — CO2-cured cement — based on an impressive array of 38 patents. We model the production costs, CO2 costs and full-cycle economics; then size the addressable market and outline our notes and patent data.

A rapid scale-up is now underway.  We see realistic medium-term CO2 savings of 10MTpa in the US and 300MTpa globally.  A CO2 price would further enable cost-competitive pricing, even after earning a 10-20% pricing premium versus traditional concrete, yielding exceptional IRRs.

On the road: long-run oil demand after COVID-19?

Another devastating impact of COVID-19 may still lie ahead: a 1-2Mbpd upwards jolt in global oil demand. This would trigger disastrous under-supply in the oil markets, stifle the economic recovery and distract from energy transition. This 17-page note upgrades our 2022-30 oil demand forecasts by 1-2Mbpd above our pre-COVID forecasts. The increase is from road fuels, reflecting lower mass transit, lower load factors and resultant traffic congestion.

Electric Rail Energy Economics?

This data-file models the energy economics of constructing new electric rail lines, to displace automobile traffic and accelerate the energy transition.

Under our base case forecasts, a mid-sized electric rail project would struggle economically, without tax-support, while saving around 1kT of CO2 per track-mile per year.

The economics depend heavily upon prices, costs and passenger numbers. Double-digit returns are achievable outside the United States, based on >75% lower apparent capex costs, especially for lines carrying c10,000 passengers per day.

CO2 prices do not materially change the picture, only adding around c1.5pp to our base case IRRs, even at a CO2 price of $500/ton, near the top of our cost-curve.

 

Long-Run Oil Demand Model

This Excel model calculates long-run oil demand to 2050, end-use by end-use, year-by-year, region-by-region; across the US, the OECD and the non-OECD. Underlying workings are shown in seven subsequent tabs. The model has been updated in May-2020 to reflect COVID.

The model runs off 25 input variables, such as GDP growth, electric vehicle penetration and oil-to-gas switching. You can flex these input assumptions, in order to run your own scenarios.

Our scenario foresees a plateau at c104Mbpd in the 2020s, followed by a gradual decline to below 90Mbpd in 2050. This reflects 7 major technology themes, assessed in depth, in our recent deep-dive report and COVID considerations, assessed in depth in a further deep-dive report.

Without delivering these technology themes, demand would most likely keep growing to 130Mbpd by 2050, due to global population growth and greater economic development in the emerging world. Our pre-COVID model is also included as a separate file for reference.

US Air Passenger Miles and Fuel Economy?

This data-file tabulates statistics on the US aviation sector, from the Bureau of Transport Statistics, to compute the fuel economy of US air travel, per plane-mile and per passenger-mile.

In 2019, 10M US flights carried 930M passengers 1.1 trn passenger-miles. The latest data in the file run to February-2020.

Fuel economy per passenger mile has risen at a 2.8% CAGR since 2003. Flight numbers have fallen by -0.4% pa and flights have become 0.8% longer.  But load factors have improved by 0.7pp each year, spreading 0.5 plane miles per gallon across more passengers.

The Top Public Companies for an Energy Transition

This data-file compiles all of our insights into publicly listed companies and their edge in the energy transition: commercialising economic technologies that advance the world towards ‘net zero’ CO2 by 2050.

Each insight is a differentiated conclusion, derived from a specific piece of research, data-analysis or modelling on the TSE web portal; summarized alongside links to our work. Next, the data-file ranks each insight according to its economic implications, technical readiness, its ability to accelerate the energy transition and the edge it confers on the company in question.

Each company can then be assessed by adding up the number of differentiated insights that feature in our work, and the average ‘score’ of each insight. The file is intended as a summary of our differentiated views on each company.

The screen is updated monthly. At the latest update, in April-2020, it contains 133 differentiated views on 70 public companies.

Urban Traffic by Time and by Travel Speeds?

We have quantified the average speed of automobiles on a dozen highways and expressways flowing into New York City from Long Island, CT and New Jersey, to quantify how traffic ebbs and flows over time.

Traffic is most severe at 4-5pm, second worst at 8-9am, but least severe at 4-5am. The data in the file are from 2H19.

We can compute average vehicle fuel economy, as a function of these traffic speeds.  Moderate-severe traffic congestion curtails average vehicle fuel economy by 15-45% on highways leading in to a city.

The Top 25 Private Companies for an Energy Transition

This data-file presents the ‘top 25’ private companies out of several hundred that have crossed our screens since the inception of Thunder Said Energy, looking back across all of our research.

For each company, we have used apples-to-apples criteria to score  economics, technical readiness, technical edge, decarbonization credentials and our own depth of analysis.

The data-file also contains a short, two-line description follows for each company, plus links to our wider research, which will outline each opportunity in detail.