CarbonCure injects CO2 into concrete during the mixing process, where it mineralizes to form CaCO3. The resultant product is up to 20% stronger and can most likely save 4-6% of the CO2 intensity of finished concrete.
Total CO2 abatement has recently been running at 60kTpa, across 300 customers, with a long-term aspiration abate as much as 500MTpa potentially.
The technology scores OK on the TSE patent framework, although some question-marks are explored in the data-file, especially around the specific solutions discussed in the patents.
This data-file summarizes the costs of capturing CO2 from different sources, so that it can be converted into materials, electro-fuels or sequestered.
Specifically, we have estimated the full-cycle costs (in $/ton), ultimate potential (in MTpa) and other technical considerations, linking to our other models and data-files.
The lowest-cost optionsare to access pure CO2 streams that are simply being vented at present, such as from the ethanol or LNG industries, but the ultimate running-room from this opportunity set is <200MTpa.
Blue hydrogen, steel and cement place next on the cost curve and could each have GTpa scale. Power stations place next, at $60-100/ton.
DAC is conceptually attractive, as the only carbon negative technology, but if all CO2 molecules in the atmosphere are fungible, it is not clear why you would pursue DAC until options lower down the cost curve had been exhausted.
This data-file compares different construction materials, calculating the costs, the embedded energy and the embedded CO2 of different construction materials per m2 of wall space.
The file captures both capex and opex: i.e., the production of the materials and the ongoing costs associated with heating and cooling, as different materials have different thermal conductivities.
Covered materialsinclude conventional construction materials such as concrete, cement, steel, brick, wood and glass, plus novel wood-based materials such as cross-laminated timber. Insulated wood and CLT are shown to have the lowest CO2 intensities and can be extremely cost competitive.
The data-file also compares different insulation materials, including their costs, thermal conductivities (W/m.K) and the resultant energy economics of insulation projects.
This data-file captures the economics of cross-laminated timber, a fast-growing construction material that is c80% less CO2-intensive when substituted directly for traditional building materials such as concrete and steel, and results in buildings with 15-35% lower embedded CO2.
The economics are exciting. We find potential to generate 20% IRRs purchasing $25/ton timber and converting into $500/m3 CLT in newbuild production facilities costing $800/m3 pa.
The economics can be stress-tested in the model. Underlying capex, opex and case studies and companies are profiled in subsequent tabs.
This data-file is a screen of 27 companies, which are turning CO2 into valuable products, such as next-generation plastics, foams, concretes, specialty chemicals and agricultural products.
For each company, we have assessed the commercial potential, technical readiness, partners, size, geography and other key parameters. 13 companies have very strong commercial potential. 10 concepts are technically ready (up from 8 as assessed in mid-2019), 6 are near-commercial (up from 5 in mid-2019), while 13 are earlier-stage.
A detailed breakdown is also provided for the opportunity to use CO2 enhancing the yields of commercial greenhouses (chart below).
The featured companiesinclude c21 start-ups. But leading listed companies include BP (as a venture partner), Chevron Phillips, Covestro, Repsol, Shell, TOTAL (as a venture partner) and Saudi Aramco.
Cookies?
This website uses necessary cookies. Our cookies are simply to improve your experience. We do not undertake any advertising or targeting via our cookies. By clicking 'accept' or continuing to use the website, you consent to our use of cookies.AcceptRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.