Search results for: “climate model”
-
Polymers and higher olefins: the economics?
Our base case for producing high density polyethylene (HDPE) from ethylene requires pricing of $1,250/ton for a 10% IRR on a new greenfield plant. CO2 intensity is 0.3 kg/kg. However temperatures and pressures can vary vastly for different polymers, moving energy economics accordingly.
-
Windy physics: how is power of a wind turbine calculated?
This data-file is an overview of wind power physics. Specifically, how is the power of a wind turbine calculated, in MW, as a function of wind speed, blade length, blade number, rotational speed (in RPM) and other efficiency factors (lambda). A large, modern offshore wind turbine will have 100m blades and surpass 10MW power outputs.
-
CO2 liquefaction: the economics?
This data-file captures the costs of liquefying CO2 for transportation in a ship, rail car or truck, to promote smaller-scale CCS. Our baseline is a cost of $15/ton, using c100kWh of energy per ton of CO2, which is approximately equivalent to a c3% energy penalty. There is scope for optimization.
-
Coal mining: the economics?
Coal is ridiculously cheap, providing thermal energy at around 1c/kWh while also generating a 10% IRR on new investment. But CO2 intensity is also very high at 0.55kg/kWh (thermal basis). Capex, opex and cost breakdowns are in the data-file.
-
Auto manufacturing: the economics?
This is a simple model, to break down the $30k sales price of a typical mass-market automobile. c25% accrues to suppliers, c20% is sales taxes, c20% is dealer costs/logistics, c10% employees, c10% material inputs, c10% O&M, 1% electricity and c5% auto-maker margins. Prices may inflate 60% amidst industrial shortages.
-
Marcellus shale: well by well production database?
This large data-file tracks activity, well-by-well, across c11,000 wells in the Pennsylvania Marcellus, month-by-month, from 2015-2021. First tier operators stand out, especially as the basin has consolidated. They achieve higher IP rates and have been able to do more with less.
-
Graphite production: the economics?
This data-file captures simplified costs for producing battery-grade graphite (i.e., 99.9% pure, coated, spheronized graphite) in an integrated facility, from mine to packaged output. Our marginal cost is estimated at around $10,000/ton for a 10% IRR. CO2 intensity varies but averages 10kg/kg.
-
Urea production: the economics
This data-file captures the economics of producing urea, an important fertilizer and intermediate material. We estimate a marginal cost of $325/ton, based on $2/mcf-e energy inputs. CO2 intensity is 1.5 tons/ton. But costs will increase well above $800/ton during times of energy shortages.
-
Capacitor banks: the economics?
This model captures the economics of power factor correction via installing capacitor banks upstream of inductive loads. A 10% IRR is derived from a system costing $30/kVAR, reducing real power losses by 0.5%, thus saving on 8c/kWh electricity prices (75% of savings), $3.5/kW demand charges (15%) and a $20/ton CO2 price (10%).
Content by Category
- Batteries (87)
- Biofuels (42)
- Carbon Intensity (49)
- CCS (63)
- CO2 Removals (9)
- Coal (38)
- Company Diligence (92)
- Data Models (823)
- Decarbonization (159)
- Demand (110)
- Digital (58)
- Downstream (44)
- Economic Model (200)
- Energy Efficiency (75)
- Hydrogen (63)
- Industry Data (276)
- LNG (48)
- Materials (81)
- Metals (75)
- Midstream (43)
- Natural Gas (146)
- Nature (76)
- Nuclear (23)
- Oil (163)
- Patents (38)
- Plastics (44)
- Power Grids (124)
- Renewables (149)
- Screen (112)
- Semiconductors (30)
- Shale (51)
- Solar (67)
- Supply-Demand (45)
- Vehicles (90)
- Wind (43)
- Written Research (347)