Could new airships displace trucks?

Flying Airships Displace Trucks

In 2019, TOTAL co-filed two patents with an airship-technology company, Flying Whales, aiming to lower the logistical costs of moving capital equipment into remote areas. An example is shown above. The LCA60T is envisaged to carry up to 60T of cargo (c4x the capacity of a truck), with a range of 100-1,000km. This short note assesses the opportunity, and whether these new airships could displace trucks, or lower diesel demand. We are most excited by the impact for onshore wind.


[restrict]

Flying Whales is a French company, originally supported by the French Public Forest Office, to progress transportation technologies that could help evacuate timber. It has since raised €200M, including from BPI and Chinese backers.

Designs for the LCA60T are shown below, from TOTAL and Flying Whales’ patent. The ship is 154m x 68m, constructed from rigid carbon-fiber composite, generating aerostatic lift from 10, unpressurised cells of helium.

Its distributed electric propulsors are similar to those in the flying car concepts that excite us. We recently re-assessed our rankings of different flying car concepts here.

Technical Readiness is at Level 5-6, but rapid progress is foreseen: Wind-tunnel testing in 2019, the first test phase in 2020, the first prototype flight in 2021. Flying Whales company plans to construct a plant in Bordeaux, for €90M, to produce 12 airships per year by 2022, ramping up to €5bn of sales within 10-years, from constructing 150 airships in France and China.

What Advantages?

Airships can rapidly reach places that trucks cannot, particularly in remote areas without naviable roads. They are helped by vertical take-off and landing (VTOL), and a system of a dozen winches, that can lower cargoes.

Airships can also carry large loads, up to 60T, at speeds up to 100kmph. For comparison, a typical truck carries c14T, a Sikorsky S-64 SkyCrane carries 9T and the largest Russian Mil Mi-26 helicopters can carry 20T.

Economics are better than helicopters. Flying Whales estimates that its deliveries could be 20x less expensive than helicopters, which can cost c$1M/day or at least $11,000/hour. The Flying Whales should cost c$50,000/day, which perhaps translates into c$5,000/hour. This is still much more pricey than a truck ($60-200/hour), making Flying Whales best suited to large loads in remote locations. The technology is unlikely to replace trucks on highways.

Wind turbines? Where these capabilities may best come together is in the delivery of wind turbine blades, where the logistics can be notoriously challenging (chart below). All three turbine blades could in principle be delivered as a single Flying Whales Cargo, slashing the c$30,000-100,000 delivery costs per turbine, that can be incurred in the onshore wind industry.

What Energy Economics?

The energy economics of Flying Whales’ airships should be a great improvement on helicopters, but still fall short of trucks, we estimate.

Specifically, the Flying Whales airships consume 1.5MW at peak cruise speeds around 100kmph. This power consumption is equivalent to c100 gallons of diesel per hour, fed into a diesel generator, which in turn feeds the propulsion units. Total fuel economy thus runs at 30 ton-miles per gallon (chart below).

By contrast, we estimate helicopters consume c5,000 gallons of jet fuel per hour, for fuel economies of 1.5 ton-miles per hour.

But trucks consume only c10 gallons of diesel per hour, for a fuel economy of c67 ton-miles per gallon.

Fuel consumption may also be higher for large airships, during strong gusts of wind. To stabilize the Airships, they will contain 3MW ultracapacitors, to provide bursts of energy.

The most efficient freight delivery method remains via container ships and trucks, according to our data-file (chart below), which now also includes the calculations above for Airships.

We conclude that new airships may help deflate delivery costs in remote locations: particularly for onshore oil and gas, onshore wind and niches in the construction sector. But they are unlikely to displace materialy volumes of diesel demand, which remain in our models of long-run oil demand (chart below).

Source: Kuhlmann, H. F., (2019). Method for Transporting a Payload to a Target Location and Related Hybrid Airship, Patent WO2019092471A1

[/restrict]

Please log in to view this content

Robot delivery: Unbelievable fuel economy…

fuel economy of Robot delivery

Stand on a street corner in Tallinn, in the summer of 2019, and you might encounter the scene below: not one, but two autonomous delivery robots, comfortably passing one-another.

The fuel economy of these small electric machines is truly transformational, around 100x better than a typical motorcycle (the trusty workhorse of take-aways past), around 200x better than a typical car and around 400x better than a typical pick-up.

Large implications follow for energy supply and demand, if such delivery-robots take off…

[restrict]

Starship is the company commercialising the robots above, backed by the co-founders of Skype, lightly aiming to “revolutionise food and package deliveries, offering people convenient new services that improve everyday life… instant delivery works around your schedule at much lower costs”.

Over 50,000 deliveries have been completed by April-2019, including trials in California, Tallinn, George Mason University, and Milton Keynes. Based on the chart below, we estimate the fleet is traversing c400km/day. In some locations, the costs are as low as c$2/delivery, with an ambition of reaching $1/delivery as the technology scales.

What does it mean for energy demand? Take a Ford F-150 which achieves 17mpg. You can achieve a 4x fuel-economy uplift by electrifying it. Another 2.5x uplift comes from lowering the mass to 30kg. Another c40x net uplift comes from decreasing the average speed of travel to 3-5kmph. These numbers can be calculated, approximately, from the physics, in our data-file of fuel economies by vehicle type.

Direct energy economics are calculated below, based on the battery disclosures for one of Starship’s robots. A single delivery robot is implied to achieve an unheard-of c200miles/kWh. Matching the maths above, this is indeed 100-400x better than alternative transportation technologies which we have profiled.

Creation or destruction? The numbers above augur poorly for long-run demand of liquid transportation fuels. In cost terms, it is very difficult to compete with these vehicles’ incredible efficiency. What is unclear is whether such delivery vehicles destroy old demand, or create new demand, per “Jevons Paradox” that more efficient energy technology has historically increased energy demand.

[/restrict]

Please log in to view this content

Our conclusion is to have found further evidence that transportation technology is evolving. Forward thinking energy companies will be preparing for the change, as evidenced by their patents, their projects and their venturing.

Shale: restoring downstream balance? New opportunities in ethylene and diesel.

New opportunities in ethylene and diesel

We have all heard the criticism that shale oil is “too light”, so its ascent will create a surplus of natural gas liquids and a shortage of heavier distillates. Less discussed is the opportunity in this imbalance. Hence this note highlights one such opportunity, based on an intriguing patent from Chevron, which could convert ethylene into diesel and jet fuel, to maximise value as its shale business ramps up.


[restrict]

Are ethylene, polyethylene and diesel markets broken?

US ethane production reached a new peak of 1.9Mbpd in 1Q19, having doubled since 2014. Two thirds of that ascent can be attributed to the Permian, where output rose 4x over the same time-frame and 10-15% of production is ethane. So far, the latest rises in ethane are being absorbed by new steam crackers on the US Gulf Coast. In 2018, Chevron and Exxon both started new facilities, which will each take in 90kbpd of ethane, to produce ethylene and polyethylene.

A glut of ethylene and polyethylene has resulted. S&P Platts noted in June-2019 how Gulf Coast ethylene prices had fallen to an all-time low of 12c/lb, which is down -80% from 2012-14 average levels of 60c/lb. As a consequence, polyethylene prices are also -20% since early 2018. Hence ICIS notes the risk of a “trade war” as the world must absorb growing US polyethylene supplies. Other commentators are even more cautious, arguing the ramp up of US crackers and chemicals plants will coincide with a structural decline in plastics demand. All of this would block the outlet for shale’s light components and hinder its ascent (chart below, our model downloadable here).

Fears over a diesel shortage persist on the other side of the oil product market. Shale’s light oil composition has been blamed. One European Major recently told us this is why it remains negative on the shale sector, as it cannot run shale oil effectively through its refineries, which are geared to cracking and coking heavy oils. IMO 2020 sulphur regulation compounds the fear of a diesel shortage, pulling in c2-4Mbpd of diesel into the shipping fuels market, as demand for high-sulphur fuel oil collapses.

An opportunity is thus created for an integrated oil company, if it can transform the surplus of ethane ($0.10/lb), ethylene ($0.13/lb) or other light fractions into diesel ($0.33/lb).

Seizing the opportunity: from ethylene to diesel?

What is fascinating from our review of 3,000 of the Oil Majors’ patents is that many companies are progressing technologies to seize these emerging opportunities, i.e., to convert the abundant by-products of shale into under-supplied products. For the challenge described above, we recently reviewed a Chevron patent, which can oligomerize ethylene into diesel and jet fuel. The process schematic is shown below.

Similar technologies already exist to convert ethylene into dimers, trimers and oligomers, rather than straight polyethylene. For instance, Shell’s SHOP process uses Nickel catalyst to produce alpha-olefins. Others include the Ineos process, Gulf process (ChevronPhillips), Sabic Linde α-Sablin or the IFP-Axens AlphaSelect process.

Where Chevron has an edge is in ionic liquids catalysts, which have been used elsewhere in its refining operations to achieve higher yields of very high octane alkylates for the gasoline pool. Chevron’s ISOALKY technology won Platts’ 2017 “Breakthrough Solution Award” and has been installed in a c$90M retrofit to Chevron’s Salt Lake City refinery. The first Chevron patents for alkylation of ethylene using ionic liquid catalysts go back to 2006.

The key improvements in Chevron’s latest patent filings allow ethylene to be converted into distillates. Advantages are that the ethylene only needs to be in the molar majority (>50%) for the reaction to progress, excess isoparrafin does not need to be deliberately fed and recycled, and the process can tolerate mild impurities (0-10ppm sulfur, 0-10ppm oxygenate, 0-100ppm dienes and residual trace metals, which would poison metallocene catalysts). The patent uses a HCl co-catalyst.

The commercial rationale is justified thus: “There is a need for a process that can be applied to a mixed hydrocarbon stream containing ethylene to oligomerize ethylene into a high value hydrocarbon product using ionic liquid catalysts to obtain jet and diesel fuel and satisfy increasing market demand… By converting ethylene to jet fuel and diesel blending stock, a significant value uplifting is achieved”.

The technology has been demonstrated. For example, the patent describes a continuous test-run which achieved 77% yields of product, of which c69% are distillate-range (chart below). Fuel properties are described to be excellent: 48-57 cetane number, -76F freeze point/cloud point and negligible sulphur content.

It may be interesting to explore with the company whether Chevron plans to deploy this technology, integrating around its shale portfolio.

An important principle is also illustrated for the ascent of shale: Technical solutions are under development to absorb shale’s light product slate, without permanently distorting downstream markets.


[/restrict]

Please log in to view this content

Conclusions and Further Work?

Shale’s light product slate may create opportunities for integrated companies. Chevron’s ethylene-to-diesel patents are one example. But we have also seen a surprising uptick among other Oil Majors in patent filings for GTL, for oxidative coupling of methane and for a process to convert C3-4s into gasoline and diesel range molecules.

Our positive outlook on shale is best illustrated by our deep-dive note, Winner Takes All, but also be recent work focusing on the emerging opportunities with Fibre-Optic Sensing and Shale-EOR.

Can we help? If you would like to register any interest in the topics above, to guide our further work, then please don’t hesitate to contact us.

IMO 2020. Fast Resolution or Slow Resolution?

IMO 2020 sulphur regulations

The downstream industry is currently debating whether IMO 2020 sulphur regulations will be resolved quickly or slowly. We think the market-distortions may be prolonged by under-appreciated technology challenges.

[restrict]

As context, from 2020, it will no longer be permitted to burn fuels with 3.5% sulphur in the marine segment. Their maximum permitted sulphur content will fall to 0.5%. In principle, refining cracks will move, advantageously for low-sulphur diesel and disadvantageously for high-sulphur fuel oil.

Over time, this should provide an economic incentive to construct incremental hydro-processing and hydro-conversion technologies. However, it still may not be so simple as to construct a few extra hydro-processing units. Not all sulphur is equal.

Hard Sulphur and Easy Sulphur

On the one hand, aliphatic sulphur compounds are easily treated. The process uses a hydrogen partial pressure of 10-30kg/cm2, 180-370C temperatures, and liquid:catalyst ratio up to 4:1. The catalyst contains Cobalt, Nickel and/or Molybdenum on an aluminium oxide framework. This is industry-standard technology, available to all.

However, highly branched molecules are harder. One class, dibenzothiophenes, is pictured below. Their structure impedes the sulphur “heteroatom” from reaching the active site on the catalyst. Run it through a low-spec hydrotreater, and it comes out the other side… unchanged.

Another challenge with aromatic sulphur-containing compounds is their under-saturation. Traditional hydroprocessing techniques, aimed primarily at reducing sulphur, also tend to saturate these aromatic rings which “can increase the amount of hydrogen consumed during hydroprocessing by as much as an order of magnitude”. This is problematic at refineries with limited hydrogen. It adds cost.

It may be under-appreciated how much of the sulphur in the world’s fuel market is “difficult sulphur”, rather than “easy sulphur”. For example, if we take Saudi Arabia’s production, comprising the most abundant crude oil streams on the planet, the more challenging sulphurs comprise 0.5% of Arab Light, and 1.3% of Arab Heavy.

As Aramco’s patents note “it is very difficult to upgrade existing hydrotreating reactors” and “the economical removal of refractory sulfur-containing compounds is exceedingly difficult to achieve”. Especially if the end target is to reach higher European and US standards of 0.1% sulphur caps.

Resolving the Impasse: Large Investments?

There are solutions to this challenge. Indeed, Aramco has filed patents for methods of removing these more challenging sulphurs. One is to build a new separation unit, distill the crude into two separate streams, isomerise the ‘hard sulphur’ stream, re-combine it with the ‘easy sulphur’ stream, then hydro-treat the mixture. Hydrocracking these compounds is another option, breaking them down into lighter, smaller, “easier sulphur” molecules.

Both of these options require large investment, with multiple processing units and ancillary units. It follows that the ultimate refinery projects used to re-balance the market post-IMO 2020 are not simple hydoprocessing projects.

Against this backdrop, fears over the energy transition make it increasingly difficult to justify large, long-term investments. Particularly in Europe.

[/restrict]

Please log in to view this content

Opportunities amidst the Challenge?

So if the market-distortions of IMO 2020 have longevity, who will stand to benefit? We are maintaining a data-file of the ‘Top Technologies for IMO 2020’ around the industry, which give specific companies an edge. The data file now contains over 25 technologies across 7 Majors.


References

Al-Shahrani, F., Koseoglu, O. R. & Bourane, A. (2018). Integrated System and Process for In-Situ Organic Peroxide Production and Oxidative HeteroAtom Conversion. Saudi Aramco Patent.

Koseoglu, O. R., (2018). Integrated Isomerisation and Hydrotreating Process. Saudi Aramco Patent CN107529542

Hanks, P. (2018). Trim Alkali Metal Desulfurisation of Refinery Fractiions. ExxonMobil Patent US2018171238 

LNG in transport: scaling up by scaling down?

LNG demand in transportation

Next-generation technology in small-scale LNG has potential to reshape the global shipping-fuels industry. Especially after IMO 2020 sulphur regulations, LNG should compete with diesel. Opportunities in trucking and shale are less clear-cut.

This note outlines the technologies, economics and opportunities for LNG as a transport fuel, following a three-month investigation.


  • Why technology matters. Pages 2-4 of the note describe incumbent technologies in small-scale LNG, and the need for superior solutions.

  • The cutting edge . Pages 5-7 draw on patents and technical papers to describe next-generation technologies, at the cutting edge of small-scale LNG. We model that they are economic. They can can provide LNG to the market at $10/mcf.

  • Potential to transform shipping-fuels. Pages 9-13 find strong economic upside for novel LNG technologies in the shipping industry, with potential to create 40-60MTpa of incremental LNG demand, looking across the global shipping fleet.

  • Less positive on LNG as a trucking fuel. Pages 14-15 explain why the economics are more challenging for LNG use in land-transportation, i.e., trucking.

  • Less positive on LNG use in shale. Page 16 explains, similarly, why LNG is less advantageous in the shale patch than converting rigs and frac spreads to piped gas.

  • Other technologies. Page 17 notes other companies with interesting offerings in small-scale LNG liquefaction, including advances by Exxon and Shell.

Have further questions? Please contact us and we’ll be happy to help: contact@thundersaidenergy.com

Our Top Technologies for IMO 2020

Top technologies for IMO 2020

So far we have reviewed 400 patents in the downstream oil and gas industry (ex-chemicals). A rare few prompted an excited thought — “that could be really useful when IMO 2020 comes around”.

Specifically, from January 2020, marine fuel standards will tighten, cutting the maximum sulphur content from 3.5% to 0.5%. It will reduce the value of high-sulphur fuel oil, and increase the value of low-sulphur diesel.

This note summarises the top dozen proprietary technologies we have seen to capitalise on the shift, summarised by company (chart below).

[restrict]

(1) Eni Slurry Technology (EST). Advertised as “the best worldwide technological solution for operators who wish to completely convert the bottom of the barrel”, EST converts >97% of heavy inputs into more valuable fractions. It is a hydroconversion process, which upgrades fuel oil or other heavy crudes, using a slurried, nano-dispersed zeolite, impregnated with Molbdenum/Nickel sulphide salt catalyst, run at 380-440C. $4.5/bbl uplifts to refining margins are cited by the company. It has been licensed by two Chinese refiners (Sinopec, Zhejian), for their own upgrading processes. We estimate EST will yield 10-20% returns, at $20-40/bbl upgrading spreads (chart below, model here).

(2) – (7). ExxonMobil refining technology. So far, ExxonMobil has the most advanced refining technology, out of the patents we have reviewed across the industry (chart below). For IMO 2020, this includes:

(2) Exxon. Hydrocracking. In its public disclosures, Exxon has alluded to using a proprietary catalyst in the $1bn hydrocracker at its 190kbpd Rotterdam refinery expansion, upgrading lower-value vacuum gasoil into Group II base stocks (see below) and ultra-low sulfur diesel.

(3) Exxon. Hydroprocessing. 5 patents were filed in 2018, for hydroprocessing and purifying heavy oil, coker oil or deasphalted slurry oil, to remove sulphur and nitrogen impurities, using a proprietary catalyst prepared from Group VI and Group VIII metals.

(4) Exxon. Lubricants from Fuel Oil. Exxon has filed patents to create Group I-III base oils for its lubricants business using FCC slurry, thermally cracked resids or other “disadvantaged feeds”. Requires high-pressure hydrofinishing to reduce aromatic saturation.

(5) Exxon. Dewaxing Catalysts. In 2018, Exxon patented a new de-waxing process that was achieving “unexpectedly high hydrogenation of feedstocks” without unwanted cracking. The proprietary catalyst combines noble metals and base metals on a zeolite framework. It can be used to improve heavier fuels, such as fuel oil.

(6) Exxon. Reduced Severity FCC. In 2018, Exxon patented a new combination of desaphalting and hydroprocessing. These steps are performed prior to fluid catalytic cracking (FCC). This allows the FCC to be run at less severe conditions. In turn, this reduces the production of light paraffins. It is seen to increase gasoline/diesel yields and lower fuel oil yields.

(7) Exxon. Diesel Range Fuel Blends. Some elastomers in vehicle fuel systems are known to swell when exposed to highly aromatic fuels and to shrink when exposed to renewable diesel components. The elastomers can fail when renewable components surpass 10%, limiting use of renewable diesel. Hence Exxon has tested and patented diesel blends (typically with 20+ components) that can tolerate >20% renewable inputs without shrinking fuel-systems’ elastomers.


(8) Shell. Ebullated Bed Processes. Shell has filed three patents to overcome the problem of sediment-fouling when upgrading heavy, asphaltene-rich hydrocarbons in an ebullated bed reactor. Shell’s solution is a reactor design with an ‘upper section’ and a ‘lower section’, each with its own catalyst composition.

(9) Shell. Hydrodesulfurisation Catalysts. Uses molybdenum-disulfide nano-particles supported on a titanium framework.

(10) Shell. Fuel Oil Composition. Shell has patented its own blend of fuel oil with 0.100% sulphur concentration, suggesting it is gearing up to compete within the fuel oil segment.


(11) Chevron. Improved hydro-conversion catalysts. Chevron filed c35 distinct patents for zeolite catalyst systems in 2018, largely aimed at hydrocracking, and improving energy efficiency. One formulation achieves 37% middle distillate yields from heavy oil, at 193C. Another can yield up to 83% middle distillates, when running C5s at 140-370C. Yields on average heavy inputs are c50%.


(12). Aramco. Advanced Hydrocracking Catalyst. Aramco has patented a system that is achieving higher yields of middle distillate, by avoiding “over-cracking” kerosene and gasoil. It works via a zirconium-hafnium zeolite, which encourages heavier oil into the zeolite mesopores. Do not be surprised to find Aramco in this list: it is a clear technology leader across the 1,440 patents we have reviewed so far.

If you have any questions about this list, or think we’ve missed anything that should be on here, then please let us know: contact@thundersaidenergy.com

[/restrict]

Please log in to view this content

Is gas a competitive truck-fuel?

is gas a competitive truck-fuel

We have assessed whether gas is a competitive trucking fuel, comparing LNG and CNG head-to-head against diesel, across 35 different metrics (from the environmental to the economic). Total costs per km are still 10-30% higher for natural gas, even based on $3/mcf Henry Hub, which is 5x cheaper than US diesel. The data-file can be downloaded here.

The challenges are logistical. Based on real-world data, we think maintenance costs will be 20-100% higher for gas trucks (below). Gas-fired spark plugs need replacing every 60,000 miles. Re-fuelling LNG trucks requires extra safety equipment.

is gas a competitive truck-fuel

Specially designed service stations also elevate fuel-retail costs by $6-10/mcf. Particularly for LNG, a service station effectively ends up being a €1M regasification plant (or around $250/tpa, costs below).

is gas a competitive truck-fuel

We remain constructive on the ascent of gas (below), but road vehicles may not be the best option.

is gas a competitive truck-fuel

To flex our input assumptions, please download our data-model, comparing LNG, CNG and other trucking fuels across 35 different metrics .

Copyright: Thunder Said Energy, 2019-2024.