Search results for: โadditive printingโ
-
Additive manufacturing: technology leaders?
This data-file tabulates 5,500 patents into additive manufacturing (3D printing), in order to identify technology leaders.ย Patent filings over time show a sharp acceleration, making AM one of the fastest growth areas for the energy transition.ย ย We profile 14 concentrated specialists, plus broader Cap Goods and Materials companies.
-
3D printing an energy transition?
Additive manufacturing (AM) can eliminate 6% of global CO2, across manufacturing, transport, heat and supply chains. We have quantified each opportunity and reviewed 5,500 patents to identify who benefits, among Capital Goods companies, AM Specialists and the Materials sector.
-
Global plastic demand: breakdown by product, region and use?
Global plastic is estimated at 470MTpa in 2022, rising to at least 800MTpa by 2050. This data-file is a breakdown of global plastic demand, by product, by region and by end use, with historical data back to 1990 and our forecasts out to 2050. Our top conclusions for plastic in the energy transition are summarized.
-
Jet fuel demand: by region and forecasts to 2050?
Jet fuel demand ran at 8Mbpd in 2019, the last year before COVID, and could rise to 18Mbpd by 2050, as global population rises 25%, jet fuel demand per capita doubles and fuel economy per aviation mile rises by 20%. This data file breaks down jet fuel demand by region, including our forecasts through 2050,…
-
Energy transition technologies: the pace of progress?
This data-file captures over 250,000 patents (ex-China) to assess the pace of progress in different energy transition technologies, yielding insights into batteries (high activity), autonomous vehicles and additive manufacturing (fastest acceleration), wind and solar (maturing), fuel cells and biofuels (waning) and other technologies.
-
Energy transition technologies: the pace of progress?
This 3-page note captures over 250,000 patents (ex-China) to assess the pace of progress in different energy transition technologies, yielding insights into lithium ion batteries (high activity), autonomous vehicles and additive manufacturing (fastest acceleration), wind and solar (maturing), fuel cells and biofuels (waning) and other technologies.
-
Turquoise hydrogen from methane pyrolysis: economics?
Turquoise hydrogen is produced by thermal decomposition of methane at high temperatures, from 600-1,200โฆC. Costs can beat green hydrogen. This data-file quantifies the economics (in $/kg), how to generate 10% IRRs, possible capex costs, and remaining challenges for commercialization.
-
Battery cathode active materials and manufacturing?
Lithium ion batteries famously have cathodes containing lithium, nickel, manganese, cobalt, aluminium and/or iron phosphate. But how are these cathode active materials manufactured? This data-file gathers specific details from technical papers and patents by leading companies such as BASF, LG, CATL, Panasonic, Solvay and Arkema.
Content by Category
- Batteries (84)
- Biofuels (42)
- Carbon Intensity (49)
- CCS (63)
- CO2 Removals (9)
- Coal (36)
- Company Diligence (85)
- Data Models (790)
- Decarbonization (156)
- Demand (103)
- Digital (50)
- Downstream (44)
- Economic Model (194)
- Energy Efficiency (75)
- Hydrogen (63)
- Industry Data (260)
- LNG (48)
- Materials (77)
- Metals (69)
- Midstream (43)
- Natural Gas (144)
- Nature (75)
- Nuclear (22)
- Oil (161)
- Patents (38)
- Plastics (43)
- Power Grids (116)
- Renewables (147)
- Screen (107)
- Semiconductors (30)
- Shale (50)
- Solar (67)
- Supply-Demand (45)
- Vehicles (88)
- Wind (40)
- Written Research (333)
Show More