the research consultancy for energy technologies

Search results for: “renewables”

  • First Solar: thin film solar breakthrough?

    First Solar: thin film solar breakthrough?

    First Solar is a solar manufacturer with capacity to produce 8GW of solar panels per year, using CdTe thin film technology. It has production in the US and uses 60% less energy than photovoltaic silicon. Efficiency is interesting. It is usually lower for CdTe than c-Si, but 70% of First Solar’s patents target improvements.

    Read more

  • Nexwafe: PV silicon breakthrough?

    Nexwafe: PV silicon breakthrough?

    Nexwafe is growing standalone silicon wafers on mono-crystalline seed wafers, with no need to slice ingots. It should improve solar efficiency, materials intensity and CO2 intensity. Our technology review found 60 patent filings and can partly de-risk growth ambitions.

    Read more

  • TOPCon: maverick?

    TOPCon: maverick?

    A new solar cell is vying to re-shape the PV industry, with 2-5% efficiency gains and c25-35% lower silicon use. This 13-page note reviews TOPCon cells, which will take some sting out of solar re-inflation, tighten silver bottlenecks and may further entrench Chinaโ€™s solar giants.

    Read more

  • Levelized cost: ten things I hate about you?

    Levelized cost: ten things I hate about you?

    โ€˜Levelized costโ€™ analysis can be mis-used, as though one โ€˜energy source to rule them allโ€™ was on the cusp of pushing out all the other energy sources. Cost depends on context. Every power source usually ranges from 5-15c/kWh. A resilient, low-carbon grid is diversified. And there is hidden value.

    Read more

  • Solar trackers: efficiency improvements?

    Solar trackers: efficiency improvements?

    Trackers re-position solar panels to face the sun, as it arcs across the sky, day-by-day, season-by-season, due to the Earth’s 23.5-degree tilt. Solar tracker efficiency improvements typically range from 20-40%. Capex cost increases are c20%. Thus 40-90% of utility solar now uses trackers.

    Read more

  • Solar volatility: interconnectors versus batteries?

    Solar volatility: interconnectors versus batteries?

    The solar energy reaching a given point on Earthโ€™s surface varies by +/- 6% each year. These annual fluctuations are 96% correlated over tens of miles. And no battery can economically smooth them. Solar heavy grids may thus become prone to unbearable volatility. Our 17-page note outlines this important challenge, and finds that the best…

    Read more

  • Electrification: the rings of power?

    Electrification: the rings of power?

    Electrification is the largest, most overlooked, most misunderstood part of the energy transition. Hence this 10-page note aims to explain the upside, simply and clearly. Electricity rises from 40% of total useful energy today to 60% by 2050. Within the next decade, this adds $2trn to the enterprise value of capital goods companies in power…

    Read more

  • Energy costs of energy transition?

    Energy costs of energy transition?

    Reaching net zero requires building wind, solar, grid infrastructure, energy storage, EVs and capturing CO2. Thus the total energy costs of energy transition reach 1% of total global primary energy in 2025, 2% in 2030, 4% in 2040 and 6.5% in 2050. Energy transition is materially easier to achieve from a period of energy surplus.

    Read more

  • Silicon carbide: faster switching?

    Silicon carbide: faster switching?

    Silicon carbide power electronics will jolt the energy transition forwards, displacing silicon, and improving the efficiency of most new energies by 1-10 pp. Hence we wonder if this disruptor will surprise to the upside, quintupling by 2027. This 12-page note reviews the technology, advantages, challenges, and who benefits?

    Read more

  • New energies: the age of materials?

    New energies: the age of materials?

    Over the past decade, costs have deflated by 85% for lithium ion batteries, 75% for solar and 25% for onshore wind. Now new energies are entering a new era. Future costs are mainly determined by materials. Bottlenecks matter. Deflation is slower. Even higher-grade materials are needed to raise efficiency. This 14-page note explores the new…

    Read more

Content by Category