the research consultancy for energy technologies

Search results for: “"power electronics" switchgear filters capacitors “

  • CCS: amine degradation rates?

    CCS: amine degradation rates?

    In post-combustion CCS facilities, amines react with CO2, which can later be re-released via steam-treating, and sent for sequestration. However, CCS plants have amine make-up rates, to replace amines that degrade (chemically, thermally) and evaporate off. This data-file quantifies make-up rates of amines in kg/ton.

    Read more

  • Offshore vessels: fuel consumption?

    Offshore vessels: fuel consumption?

    This database tabulates the typical fuel consumption of offshore vessels, in bpd and MWH/day. We think a typical offshore construction vessel will consume 300bpd, a typical rig consumes 200bpd, supply vessels consume 150bpd, cable-lay vessels consume 150bpd, dredging vessels consume 100bpd and medium-sized support vessels consume 50bpd. Examples are given in each category, with typical…

    Read more

  • Market sizing: what if CO2 abatement costs are distributed like US income?

    Market sizing: what if CO2 abatement costs are distributed like US income?

    How would CO2 abatement costs end up being distributed, if they matched the distribution of US incomes? 90% of all decarbonization would have to cost less than $80/ton. There could be 600MTpa of CCS, 60MTpa of DAC, 6MTpa of green hydrogen and e-fuels?

    Read more

  • Post-combustion CCS: what energy penalties?

    Post-combustion CCS: what energy penalties?

    A thermal power plant converts 35-45% of the chemical energy in coal, biomass or pellets into electrical energy. So what happens to the other 55-65%? Accessing this waste heat can mean the difference between 20% and 60% energy penalties for post-combustion CCS. This 10-page note explores how much heat can be recaptured.

    Read more

  • Magnets and energy: fundamental attraction?

    Magnets and energy: fundamental attraction?

    Electric currents create magnetic fields. Moving magnets induce electric currents. These principles underpin 95% of global electricity, while 50% of wind turbines and 95% of electric vehicles use permanent magnets with Rare Earth metals. This 15-page overview of magnets explains key magnet concepts and controversies for the energy transition.

    Read more

  • Adiabatic flame temperature: hydrogen, methane and oil products?

    Adiabatic flame temperature: hydrogen, methane and oil products?

    At an idealized, 100% stoichiometric ratio, the adiabatic flame temperature for natural gas is 1,960ยบC, hydrogen burns 300ยบC hotter at 2,250ยบC and oil products burn somewhere in between, at around 2,150ยบC. The calculations show why hydrogen cannot always be dropped into an existing turbine or heat engine.

    Read more

  • Pressure swing adsorption: energy economics?

    Pressure swing adsorption: energy economics?

    Pressure swing adsorption purifies gases according to their differing tendencies to adsorb onto adsorbents under pressure. Pressure swing adsorption costs $0.1/kg when separating pure hydrogen from reformers, and $2-3/mcf when separating bio-methane from biogas. Our cost breakdowns include capex, opex, maintenance, zeolite replacement, compression power and CO2 costs.

    Read more

  • Residential energy consumption over time?

    Residential energy consumption over time?

    Global residential energyย demandย runs at 2.5 MWH pp pa, of which c40% is fromย electricity, 40% is gas, c13% is biomass and c7% is oil. In ourย gasย andย powerย models, electrification rises to 65% by 2050, to help renewables reach 50% of global electricity.ย Heat pumps improve efficiency and lower primary demand in the developed world.

    Read more

  • Fans and blowers: costs and energy consumption?

    Fans and blowers: costs and energy consumption?

    Fans and blowers comprise a $7bn pa market, moving low-pressure gases through industrial and commercial facilities. Typical costs might run at $0.025/ton of air flow to earn a return on $200/kW equipment costs and 0.3kWh/ton of energy consumption. 3,000 tons of air flow may be required per ton of CO2 in a direct air capture…

    Read more

  • Boltzmann energy overview?

    Boltzmann energy overview?

    The Boltzmann constant, denoted as kB, or 1.381 x 10^-23 J/K, is the most important number in thermodynamics. It denotes the rate at which a single particle will gain thermal energy (in Joules) as its absolute temperature rises (in Kelvin). It underpins the Boltzmann distribution and the Maxwell-Boltzmann distributions, which matter in modelling gases, energy…

    Read more

Content by Category