the research consultancy for energy technologies

Search results for: “hydrogen economics”

  • Hydrogen: what GWP and climate impacts?

    Hydrogen: what GWP and climate impacts?

    Hydrogen is an indirect GWP, as it breaks down in the atmosphere over 1-2 years, increasing the lifespan of other GHGs, such as methane. So what is hydrogen GWP versus methane? 1 ton of atmospheric H2 most likely causes 11x more warming than 1 ton of CO2 (the number for methane is 34x). Eight conclusions…

    Read more

  • Green hydrogen: the economics?

    Green hydrogen: the economics?

    We have modelled the economics of a green hydrogen project, electrolysing water using renewable energy. An H2 price of $8/kg ($60/mcfe) is required to earn a 10% return. Costs data are captured. The most challenging input variable is not capex cost or efficiency, but utilization rate, if the project is to be truly green.

    Read more

  • Adiabatic flame temperature: hydrogen, methane and oil products?

    Adiabatic flame temperature: hydrogen, methane and oil products?

    At an idealized, 100% stoichiometric ratio, the adiabatic flame temperature for natural gas is 1,960ยบC, hydrogen burns 300ยบC hotter at 2,250ยบC and oil products burn somewhere in between, at around 2,150ยบC. The calculations show why hydrogen cannot always be dropped into an existing turbine or heat engine.

    Read more

  • Global hydrogen: market breakdown?

    Global hydrogen: market breakdown?

    This data-file is a global hydrogen market breakdown, disaggregating the 110MTpa market (mainly ammonia, methanol and refining), how it is met via different production technologies, and our estimates of those technologies’ costs (in $/kg) and CO2 intensities (in kg/kg or tons/ton).

    Read more

  • Air Products: ammonia cracking technology?

    Air Products: ammonia cracking technology?

    Can we de-risk Air Products’s ammonia cracking technology in our roadmaps to net zero, which is crucial to recovering green hydrogen in regions that import green ammonia from projects such as Saudi Arabia’s NEOM. We find strong IP in Air Products’s patents. However, we still see 15-35% energy penalties and $2-3/kg of costs in ammonia…

    Read more

  • Heavy truck costs: diesel, gas, electric or hydrogen?

    Heavy truck costs: diesel, gas, electric or hydrogen?

    Heavy truck costs are estimated at $0.14 per ton-kilometer, for a truck typically carrying 15 tons of load and traversing over 150,000 miles per annum. Today these trucks consume 10Mbpd of diesel and their costs absorb 4% of post-tax incomes. Electric trucks would be 20-50% most costly, and hydrogen trucks would be 45-75% more, which…

    Read more

  • Nafion membranes: costs and hydrogen crossover?

    Nafion membranes: costs and hydrogen crossover?

    Perfluorinated sulfonate (PFSA) membranes, such as Nafion, are the crucial enabler for PEM electrolyzers, fuel cells and other industrial processes. The market is worth $750M pa. The key challenges are costs, longevity and hydrogen crossover, which are tabulated in this data-file.

    Read more

  • MIRALON: turquoise hydrogen breakthrough?

    MIRALON: turquoise hydrogen breakthrough?

    MIRALON is an advanced material, being commercialized by Huntsman, purifying carbon nanotubes from the pyrolysis of methane and also yielding turquoise hydrogen. This data-file reviews MIRALON technology, patents, and a strong moat. Our model sees 15% IRRs if Huntsman reaches a medium-term cost target of $10/kg MIRALON and $1/kg H2.

    Read more

  • Density of gases: by pressure and temperature?

    Density of gases: by pressure and temperature?

    The density of gases matters in turbines, compressors, for energy transport and energy storage. Hence this data-file models the density of gases from first principles, using the Ideal Gas Equations and the Clausius-Clapeyron Equation. High energy density is shown for methane, less so for hydrogen and ammonia. CO2, nitrogen, argon and water are also captured.

    Read more

  • Gas pipelines, CO2 pipelines, hydrogen pipelines?

    Gas pipelines, CO2 pipelines, hydrogen pipelines?

    This model captures the energy economics of a pipeline carrying natural gas, CO2 or hydrogen. It computes the required throughput tariff (in $/mcf or $/kg) to earn a 10% IRR. Hydrogen tariffs must be 2x new gas pipelines and 10x pre-existing gas pipelines. CO2 disposal is more economic at scale.

    Read more

Content by Category