the research consultancy for energy technologies

Search results for: “semiconductor semiconductors”

  • Hydrogen peroxide: production costs?

    Hydrogen peroxide: production costs?

    Hydrogen peroxide production costs run at $1,000/Tpa, to generate a 10% IRR at a greenfield production facility, with c$2,000/Tpa capex costs. Today’s market is 5MTpa, worth c$5bn pa. CO2 intensity runs to 3 kg of CO2 per kg of H2O2. But lower-carbon hydrogen could be transformational for clean chemicals?

    Read more

  • Solar module production by company?

    Solar module production by company?

    The world produced over 400GW of solar modules in 2023, which is up 10x from a decade ago. This data-file breaks down solar module production by company and over time, comparing the companies by solar module selling prices ($/kW), margins (%), efficiency (%), transparency, and technology development.

    Read more

  • LONGi: technology review and solar innovations?

    LONGi: technology review and solar innovations?

    This data-file is our LONGi technology review, based on recent patent filings. The work helps us to de-risk increasingly efficient solar modules, a growing focus on perovskite-tandem cells, and low-cost solar modules, with simple manufacturing techniques that may ultimately displace bottlenecked silver from electrical contacts. Key conclusions in the data-file.

    Read more

  • Thermoelectrics: leading companies and products?

    Thermoelectrics: leading companies and products?

    Thermoelectric devices convert heat directly into electricity, or conversely provide localized cooling/heating by absorbing electricity. This data-file screens leading companies in thermoelectrics, their product specifications, applications and underlying calculations for thermoelectric efficiency.

    Read more

  • Adiabatic flame temperature: hydrogen, methane and oil products?

    Adiabatic flame temperature: hydrogen, methane and oil products?

    At an idealized, 100% stoichiometric ratio, the adiabatic flame temperature for natural gas is 1,960ยบC, hydrogen burns 300ยบC hotter at 2,250ยบC and oil products burn somewhere in between, at around 2,150ยบC. The calculations show why hydrogen cannot always be dropped into an existing turbine or heat engine.

    Read more

  • Industrial gases: air separation units?

    Industrial gases: air separation units?

    Cryogenic air separation is used to produce 400MTpa of oxygen, plus pure nitrogen and argon; for steel, metals, ammonia, wind-solar inputs, semiconductor, blue hydrogen and Allam cycle oxy-combustion. Hence this 16-page report is an overview of industrial gases. How does air separation work? What costs, energy use and CO2 intensity? Who benefits amidst the energy…

    Read more

  • Manufacturing methods: an overview?

    Manufacturing methods: an overview?

    An of overview of manufacturing methods is given in this data-file. Costs are 70% correlated with energy intensity, ranging from well below 0.3 MWH/ton to well above 7MWH/ton. The lowest cost techniques take place at huge throughput in the mining industry, while the most intricate are used in semiconductor.

    Read more

  • Rare Earth market: by metal, by use, by value?

    Rare Earth market: by metal, by use, by value?

    The global Rare Earth market is 390kTpa of mined Rare Earth Oxide equivalents, which is processed to yield 150kTpa of sellable Rare Earth materials, with a value of $7bn pa. But “price” is not “value”. This data-file breaks down the global Rare Earth market, by metal, by price (in $/kg), by volume (in Tpa), and…

    Read more

  • Energy intensity of AI: chomping at the bit?

    Energy intensity of AI: chomping at the bit?

    Rising energy demands of AI are now the biggest uncertainty in all of global energy. To understand why, this 17-page note is an overview of AI computing from first principles, across transistors, DRAM, GPUs and deep learning. GPU efficiency will inevitably increase, but compute increases faster. AI most likely uses 300-2,500 TWH in 2030, with…

    Read more

  • Data-centers: the economics?

    Data-centers: the economics?

    The capex costs of data-centers are typically $10M/MW, with opex costs dominated by maintenance (c40%), electricity (c15-25%), labor, water, G&A and other. A 30MW data-center must generate $100M of revenues for a 10% IRR, while an AI data-center in 2024 may need to charge $5/EFLOP of compute.

    Read more

Content by Category