This data-file tabulates the CO2 intensity of producing and charging lithium ion batteries for automotive use, split across 10 different components, informed by the technical literature. Producing the average EV battery emits 9T of CO2 (chart below).
Electric Vehicles should nevertheless have c50% lower emissions than gasoline vehicles over their entire useful lives, assuming equivalent mileages. Although we see gasoline vehicles’ fuel economies improving.
Manufacturing EVs has an energy deficit, which means the ascent of EVs could increase net fossil fuel demand all the way out to 2037 (note here).
This data-file can be used to calculate the crossover point, which comes after around 3.5 years and c50,000 miles (chart above). The numbers will vary as a function of grid composition, technical improvements and vehicle specifications.
Smart energy systems are capable of transmitting and receiving real-time data and instructions. They open up new ways of optimizing energy efficiency, peak demand, appliances and costs. Over 100M smart meters and thermostats had been installed in the United States (including at c90M residences) and 250M have been installed in Europe by 2020.
The purpose of this data-file is to profile c40 companies commercializing opportunities in smart energy monitoring, smart metering and smart thermostats. The majority are privately owned, at the venture or growth stage. We also tabulate their patent filings.
We find most of the offerings will lower end energy demand (by an average of 7%), assist with smoothing grid-volatility, provide appliance-by-appliance demand disaggregations and encourage consumers to upgrade inefficient or potentially even defective appliances. Numbers are tabulated in the data-file to quantify each of these effects.
Further research. Our recent commentary that summarises the key points on Smart energy systems is linked here. Our outlook on the most conductive metals used in the energy transition is linked here.
This data-file tabulates the greatest challenges for lithium ion batteries in electric vehicles, which have been cited in 2020’s patent literature. Specifically, the work contains a sample of 100 patents aiming to overcome these challenges, as filed by companies including Tesla, CATL, GM, GS Yuasa, LG, Nissan, Panasonic, Sanyo, Sumitomo, Toyota, et al.
(1) The industry is now more focused on execution than radical technology breakthroughs. c40% of patents were focused on simplifying manufacturing (#1). Only 27% were focused on energy density (#3) and these were mostly small incremental tilts.
(2) Pursuit of the “million mile battery” is substantiated by a heavy focus on avoiding battery degradation (#2) and improving resiliency (#4), especially in CATL’s impressive patents.
(3) Trade offs. Greater energy density often comes at the cost of safety risks (#5) or degradation. Greater longevity often comes at the cost of lower power and slower charging. So be wary of “breakthroughs” heralded on any one dimension until all of the trade-offs are clear.
(4) Electric semi-trucks are unlikely (we prefer supercapacitors). Many patents noted great challenges scaling up larger battery packs, which adds complexity, cost and safety risks.
(5) The future problems are likely the ones on the right hand side of the chart: The industry is still exerting less focus on battery recycling, energy intensity or maintenance.
Deeper technical details on all of the points above are elaborated in the data-file…
Deeper technical details on all of the points above are elaborated in the data-file, as well as other challenges for lithium ion batteries.
Oxy-combustion is a next-generation power technology, burning fossil fuels in an inert atmosphere of CO2 and oxygen. It is easy to sequester CO2 from its exhaust gases, helping heat and power to decarbonise. The mechanics are described here. We model that IRRs can compete with conventional gas-fired power plants.
This is our model of the economics. It is constructed from technical disclosures. For example, Occidental petroleum and McDermott have already invested in one of the technology-leaders, NET Power, which constructed a demonstration plant for Allam Cycle Oxy-Combustion in LaPorte Texas, starting up in 2018.
A review of recent project progress has also been added to the data-file in early-2020. Details remain relatively secretive. But we find 9 potential deployments which are being moved towards commerciality. The details we have found are summarized in the data-file.
This short presentation describes our ‘Top Ten Themes for Energy in the 2020s’. Each theme is covered in a single slide. For an overview of the ideas in the presentation, please see our recent presentation, linked here.
We have compiled a database of over 100 companies, which have already flown c40 aerial vehicles (aka “flying cars”) and the number should rise to c60 by 2021.
The data substantiates our conclusion that aerial vehicles will gain credibility in the 2020s, the way electric vehicles did in the 2010s. Our latest updated in early-2020 shows strong progress was made in 2019 (chart below).
The database categorizes the top vehicle concepts by type, company, year-founded, company-size, company-geography, backers, fuel-type, speed, range, take-off weight, payload, year of first prototype, target commercial delivery date, fuel economy and required battery weights.
Some vehicle concepts are extremely impressive and credible; but a few may find it more challenging to meet the ranges they have promised at current battery densities…
This data-file breaks down the financial and carbon costs associated with a typical US consumer’s purchasing habits. It covers container-ships, trucks, rail freight, cars and last-mile delivery vans; based on the ton-miles associated with each vehicle and its fuel economy.
We estimate the distribution chain for the typical US consumer costs 1.5bbls of fuel, 600kg of CO2 and $1,000 per annum.
The costs will increase 20-40% in the next decade, as the share of online retail doubles to c20%. New technologies are needed in last-mile delivery, such as drones.
Please download the model to for a full breakdown of the data, and its sensitivity to oil prices, consumption patterns, international trade and exciting new delivery technologies.
This data-file presents our “top five” conclusions on the lubricants industry, after reviewing 240 patents, filed by the Oil Majors in 2018. The underlying data on each of the 240 patents is also shown in the ‘LubricantPatents’ tab.
We are most impressed by the intense pace of activity to improve engine efficiencies (chart above), across over 20 different categories. As usual, we think technology leadership will drive margins and market shares. ‘Major 1’ stands out, striving hardest to gain an edge, by a factor of 2x. ‘ Major 2 has the ‘greenest’ lubricant patents, across EVs and bio-additives. Major 4 has the single most intriguing new technology in the space.
The relative number of patents into Electric Vehicle Lubricants is also revealing. It shows the Majors’ true attitudes on electrification, in a context where they are incentivised to sell new products into the EV sector. Our lubricant demand forecasts to 2050 are also noted.
This data-file quantifies the fuel economies of typical military vehicle-types, as $1.7 trn per annum of global military activity consumes c0.7Mbpd of total oil demand on our estimates, which are also included in the data-file.
Military drones are transformational. Almost all the incumbent military vehicles in our data-file have fuel economies below 1 mpg. But the Reaper and Predator drones, famous for their deployment in recent conflicts, have achieved 3mpg and 8mpg respectively. But small, next-generation electric drones will achieve well above 1,000 mpg-equivalent.
Swarms of small-scale electric drones could emerge as the most devastating military weapon of the 21st century, according to a book we read last year on the topic, arguing that “A swarm of armed drones is like a flying minefield…they are so numerous that they are impossible to defeat… each one presents a target just 4-inches across… and shooting down a $1,000 drone with a $5,000 missile is not a winning strategy”. Our notes on the book are included in the data-file.
This data-file tabulates over 20 next-generation subsea robots, being pioneered around the industry. Each one is described and categorized, including by technical readiness.
These electric solutions could be very material for offshore economics, improving oilfield decline rates and maintenance costs. Innovations include:
- Residing subsea for c1-year at a time, by re-charging in subsea “docking” stations. This provides greater availability for lower cost.
- Increasing autonomy means these robots can be free-swimming, as a communications tether is no longer necessary, improving ranges.
- More intervention work will be conducted, rather than just inspections.
8 of the concepts in our database have all three of these capabilities above. They are at TRLs 5-6, and should be commercially ready in the early 2020s.
The leading companies are tabulated in the data-file, by Major and Service firm (chart below).
These solutions can save c$0.5-1/boe for a typical offshore oilfield, we estimate: performing inspection tasks 2-6x faster than incumbents, as well as halving costs and eliminating the weather-dependency associated with launching-recovering traditional ROVs. For full details, please download the data-file.