the research consultancy for energy technologies

Search results for: “reforming”

  • Gold hydrogen: the economics?

    Gold hydrogen: the economics?

    Natural hydrogen could be recovered from the Earth’s subsurface, with costs ranging from $0.3-10/kg, and CO2 intensities of 0.2-5.0 kg/kg. This data-file models the economic costs of gold hydrogen, and its sub-variants such as white hydrogen and orange hydrogen.

    Read more

  • Electrochemistry: battery voltage and the Nernst Equation?

    Electrochemistry: battery voltage and the Nernst Equation?

    What determines the Voltage of an electrochemical cell, such as a lithium ion battery, redox flow battery, a hydrogen fuel cell, an electrolyser or an electrowinning plant? This note explains electrochemical voltages, from first principles, starting with Standard Potentials and the Nernst Equation.

    Read more

  • Gas dehydration: costs and economics?

    Gas dehydration: costs and economics?

    Gas dehydration costs might run to $0.02/mcf, with an energy penalty of 0.03%, to remove around 90% of the water from a wellhead gas stream using a TEG absorption unit, and satisfy downstream requirements for 4-7lb/mmcf maximum water content. This data-file captures the economics of gas dehydration, to earn a 10% IRR off $25,000/mmcfd capex.

    Read more

  • Purified terephthalic acid: PTA production costs?

    Purified terephthalic acid: PTA production costs?

    A PTA price of $800-850/ton is needed to earn a 10% IRR on a new, integrated petrochemical facility, catalytically reforming naphtha into paraxylene, then oxidizing the paraxylene into purified terephthalic acid, with upfront capex cost of $1,300/Tpa. Feedstock costs, energy prices and CO2 prices matter too.

    Read more

  • Adiabatic flame temperature: hydrogen, methane and oil products?

    Adiabatic flame temperature: hydrogen, methane and oil products?

    At an idealized, 100% stoichiometric ratio, the adiabatic flame temperature for natural gas is 1,960ยบC, hydrogen burns 300ยบC hotter at 2,250ยบC and oil products burn somewhere in between, at around 2,150ยบC. The calculations show why hydrogen cannot always be dropped into an existing turbine or heat engine.

    Read more

  • Hydrogen: overview and conclusions?

    Hydrogen: overview and conclusions?

    We think the best opportunities in hydrogen will be to decarbonize gas at source via blue and turquoise hydrogen, displacing ‘black hydrogen’ that currently comes from coal, and to produce small-scale feedstock on site via electrolysis for select industries. Others see green hydrogen as a cornerstone of the future energy system. We think there may…

    Read more

  • Costs of hydrogen from coal gasification?

    Costs of hydrogen from coal gasification?

    What are the costs of hydrogen from coal gasification? This model looks line-by-line, across different plant configurations, aggregating data from technical papers. Black hydrogen costs $1-2/kg. But CO2 intensity is very high, as much as 25 tons/ton. It can possibly be decarbonized resulting in semi-clean hydrogen costing c$2.5/kg.

    Read more

  • Methanol production: the economics?

    Methanol production: the economics?

    This model captures the economics and CO2 intensity of methanol production in different chemical pathways. We find exciting potential for bio-methanol and blue methanol. These are logistically simple substitutes for oil products, but with lower carbon content. Full cost breakdowns can be stress-tested in the data-file.

    Read more

  • Upgrading Catalysts: lower refinery temperatures and pressures?

    Upgrading Catalysts: lower refinery temperatures and pressures?

    Refineries are CO2-intensive, as their average process takes place at 450C. But improved catalysts can help, based on reviewing over 50 patents from leading energy Majors, and their requisite temperatures and pressures. Combining all the best-in-class new catalysts, we think the average refinery could save 5kg/bbl of CO2 intensity.

    Read more

  • Global hydrogen: market breakdown?

    Global hydrogen: market breakdown?

    This data-file is a global hydrogen market breakdown, disaggregating the 110MTpa market (mainly ammonia, methanol and refining), how it is met via different production technologies, and our estimates of those technologies’ costs (in $/kg) and CO2 intensities (in kg/kg or tons/ton).

    Read more

Content by Category