Does Technology Drive Returns?

Technology drives 30-60% of energy companies’ return on capital. This is our conclusion after correlating 10 energy companies’ ROACEs against 3,000 patent filings. Above average technologies are necessary to generate above-average returns.


For the first time, we have been able to test the relationship between oil companies’ technical abilities and their Returns on Average Capital Employed (ROACE).

In the past, technical capabilities have been difficult to quantify, hence this crucial dimension has been overlooked by economic analysis in the energy sector.

Our new methodology stems from our database of 3,043 patents, filed by the Top 25 leading energy companies in 2018. The data cover upstream, downstream, chemicals and new energy technologies (chart below) . All the patents are further summarised, “scored” and classed across 40 sub-categories.

The methodology is to correlate our patent-scores for each company with the ROACE generated by the company in 2018. We ran these correlations at both the corporate level and the segment level…

Results: patent filings predict returns

Patent filings predict corporate returns. In 2018, the average of the Top 10 Integrated Oil Majors generated a Return on Average Capital Employed (ROACE) of 11%, based on our adjusted, apples-to-apples calculation methodology. These returns are 54% correlated with the number of patents filed by each Major (chart below).

Technology leaders are implied to earn c5% higher corporate returns than those deploying industry-average technologies, which is a factor of 2x.

Upstream patent filings also predict upstream returns, with an 85% correlation coefficient. The data are skewed by one Middle East NOC, which earns exceptionally high returns on capital, but even excluding this datapoint, the correlation coefficient is 65% (chart below).

The curve is relatively flat, with the exception of two outliers, implying that it is hardest to improve general upstream returns using technology. This may be because upstream portfolios are vast, spanning many different asset-types and geographies.

Downstream patent filings predict downstream returns, with an 80% correlation coefficient (chart below). However, our sample size is smaller, as we were unable to dis-aggregate downstream ROACE for all the Majors.

The curve is very steep, indicating that downstream technology leaders can surpass c20% returns on capital, versus c10% using industry-standard technologies.

Chemical patent filings predict chemical returns, with a 57% correlation coefficient (chart below). Again, our sample size is smaller, as we could only estimate chemicals ROACEs for some of the Majors.

The curve is also steep, with technology leaders earning c10-20% returns, versus low single digit returns for less differentiated players.

Overall, the results should matter for investors in the energy sector, for capital allocation within corporates, and for weighing up the benefits of in-house R&D. We would be delighted to discuss the underlying data with you in more detail.

Johan Sverdrup: Don’t Decline?

Equinor is deploying three world-class technologies to mitigate Johan Sverdrup’s decline rates, based on reviewing c115 of the company’s patents and dozens of technical papers. Our new 15-page note outlines how its efforts may unlock an incremental $3-5bn of value from the field, as production surprises to the upside.


Pages 2-3 provide the context of the Johan Sverdrup field, its implied decline rates and how their variability will determine the field’s ultimate value.

Page 4 re-caps the concept of decline rates and how they should be measured.

Pages 5-7 recount the history of Digital Twin technologies, the cutting edge of their application offshore Norway and evidence for Equinor’s edge, as it deploys the technology at Sverdrup.

Pages 8-11 illustrate the upside in Permanent Reservoir Monitoring, comparing Equinor’s plans versus prior achievements deploying the technology off Norway.

Page 12-14 show the cutting-edge technology that excites us most: combining two areas where Equinor has established a leading edge. This opportunity can improve well-level production rates by c1.5x.

Page 15 ends by touching upon other technologies that will be applied at Sverdrup, quantifying Equinor’s offshore patent filings versus other listed Majors’.

Oil Companies Drive the Energy Transition?

There is only one way to decarbonise the energy system: leading companies must find economic opportunities in better technologies. No other route can source sufficient capital to re-shape such a vast industry that spends c$2trn per annum. We outline seven game-changing opportunities. Leading energy Majors are already pursuing them in their portfolios, patents and venturing. Others must follow suit.


Pages 2-3 show that today’s technologies are not sufficient to decarbonise the global energy system, which will surpass 100,000TWH pa by 2050. Better technologies are needed.

Pages 4-6 show how Oil Majors are starting to accelerate the transition, by developing these game-changing technologies. The work draws on analysis of 3,000 patents, 200 venture investments and other portfolio tilts.

Pages 7-13 profile seven game-changing themes, which can deliver both the energy transition and vast economic opportunities in the evolving energy system. These prospects cover electric mobility, gas, digital, plastics, wind, solar and CCS. In each case, we find leading Oil companies among the front-runners.

Perovskites: Lord of Light?

Perovskites are the fastest-improving solar innovation. The best test-cells hit a new record of 28% efficiency last year, with line-of-sight to the mid-30s, i.e., 2x more efficient than today’s silicon photovoltaics. A Major is at the cutting edge.


Please log in to view this content

Patent Partners: Pairing Up?

This note contains our ‘Top Five’ conclusions about the Oil Majors’ research partnerships, drawing off our database of 3,500 oil company patents. Different companies have importantly different approaches. We can quantify this, by looking at the number of patents co-filed with partners (chart above).

Please log in to view this content