This model captures the economics for a typical LNG liquefaction project, breaking down IRRs and NPVs as a function of key input-variables.
The InputsOutputs taballows you to flex key variables such as: LNG sales price, Capex/tpa, Opex/mcf, Utilization, Thermal Efficiency, LNG shipping distance, LNG tanker rates, and liquids cuts. A detailed capex breakdown is also provided (below).
A base LNG case project is likely to earn a c10% real, unlevered IRR at $7.5/mcf. The economics are most sensitive to gas pricing and capex; and somewhat less sensitive to the other variables.
Shell is revolutionizing LNG project design, based on reviewing 40 of the company’s gas-focused patents from 2019. The innovations can lower LNG facilities’ capex by 70% and opex by 50%; conferring a $4bn NPV and 4% IRR advantage over industry standard greenfields. Smaller-scale LNG, modular LNG and highly digitized facilities are particularly abetted. This note reviews Shell’s operational improvements, revolutionary greenfield concepts, and their economic consequences.
We have reviewed 40 of Shell’s GTL patent filings for 2018. They show continued progress, innovating new fuels, lubricants, renewable-heavy gasolines, waxes and detergents. Each patent is summarised and categorized in this data-file.
All of this begs the question whether there is a commercial rationale for a US replica of the Pearl GTL project, to handle the over-abundance of gas emanating from the Permian; and produce these advantaged products. It would also help reduce the risk of US LNG projects glutting the market.
We therefore model the economicsin this data-file, using prior project disclosures and our learnings from the patent history. Our base case IRR is 11%, taking in 1.6bcfd of shale gas as feedstock. Resiliency is tested at varying oil and gas prices.
For large-scale capital projects in a commodity industry, harnessing better technologies tends to unlock better returns.
Hence this 7-page note evaluates ExxonMobil’s technology for constructing greenfield LNG plants, particularly in remote geographies. Its technical leadership stands out from our analysis of 3,000 patents across the industry. This matters as Exxon progresses new LNG investments in Mozambique, PNG and the US.
ExxonMobil has leading LNG technologyfor extra-large trains using the APX process, modular LNG units that minimise on-site construction costs, pressure-swing absorption to remove gas-contaminants and efficient gas turbines.
Opportunities should arisefor investors in Exxon’s LNG projects, and for its partners, resource-owners and other stakeholders, to ensure that value is maximised.
Cookies?
This website uses necessary cookies. Our cookies are simply to improve your experience. We do not undertake any advertising or targeting via our cookies. By clicking 'accept' or continuing to use the website, you consent to our use of cookies.AcceptRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.