LNG liquefaction: the economics?

This model captures the economics for a typical LNG liquefaction project, breaking down IRRs and NPVs as a function of key input-variables.

The InputsOutputs tab allows you to flex key variables such as: LNG sales price, Capex/tpa, Opex/mcf, Utilization, Thermal Efficiency, LNG shipping distance, LNG tanker rates, and liquids cuts. A detailed capex breakdown is also provided (below).

A base LNG case project is likely to earn a c10% real, unlevered IRR at $7.5/mcf. The economics are most sensitive to gas pricing and capex; and somewhat less sensitive to the other variables.

Shell: the future of LNG plants?

Shell is revolutionizing LNG project design, based on reviewing 40 of the company’s gas-focused patents from 2019. The innovations can lower LNG facilities’ capex by 70% and opex by 50%; conferring a $4bn NPV and 4% IRR advantage over industry standard greenfields. Smaller-scale LNG, modular LNG and highly digitized facilities are particularly abetted. This note reviews Shell’s operational improvements, revolutionary greenfield concepts, and their economic consequences.

US Shale Gas to Liquids?

We have reviewed 40 of Shell’s GTL patent filings for 2018. They show continued progress, innovating new fuels, lubricants, renewable-heavy gasolines, waxes and detergents. Each patent is summarised and categorized in this data-file.

All of this begs the question whether there is a commercial rationale for a US replica of the Pearl GTL project, to handle the over-abundance of gas emanating from the Permian; and produce these advantaged products. It would also help reduce the risk of US LNG projects glutting the market.

We therefore model the economics in this data-file, using prior project disclosures and our learnings from the patent history. Our base case IRR is 11%, taking in 1.6bcfd of shale gas as feedstock. Resiliency is tested at varying oil and gas prices.

Greenfield LNG: Does Exxon have an edge?

For large-scale capital projects in a commodity industry, harnessing better technologies tends to unlock better returns.

Hence this 7-page note evaluates ExxonMobil’s technology for constructing greenfield LNG plants, particularly in remote geographies. Its technical leadership stands out from our analysis of 3,000 patents across the industry. This matters as Exxon progresses new LNG investments in Mozambique, PNG and the US.

ExxonMobil has leading LNG technology for extra-large trains using the APX process, modular LNG units that minimise on-site construction costs, pressure-swing absorption to remove gas-contaminants and efficient gas turbines.

Opportunities should arise for investors in Exxon’s LNG projects, and for its partners, resource-owners and other stakeholders, to ensure that value is maximised.

Copyright: Thunder Said Energy, 2022.