Methane emissions from pneumatic devices, by operator, by basin

Methane emissions from pneumatic devices

Methane leaks from 1M pneumatic devices across the US onshore oil and gas industry comprise 50% of all US upstream methane leaks and 15% of all upstream CO2. This data-file aggregates data on 500,000 pneumatic devices, from 300 acreage positions, of 200 onshore producers in 9 US basins.


The data are broken down acreage position by position, from high-bleed pneumatic devices, releasing an average of 4.1T of methane/device/year to pnuematic pumps and intermediate devices, releasing 1.4T, through to low-bleed pneumatic devices releasing 160kg/device/year.

It allows us to rank operators. Companies are identified, with a pressing priority to replace medium and high bleed devices. Other companies are identified with best-in-class use of pneumatics (chart below). The download contains 2018 and 2019 data, so you can compare YoY progress by company.

A summary of our conclusions is also written out in the second tab of the data-file.  For opportunities to resolve these leaks and replace pneumatic devices, please see our recent note on Mitigating Methane.

Variable Power Tariffs Exacerbate Social Inequalities?

This data-file tabulates the impacts of variable electricity tariffs, after switching 4.622 households over from fixed electricity tariffs, across a large-scale sample in the United States. This theme is increasingly important as intermittent renewables reach in developed world power grids (note here).


Residential electricity demand is inelastic, with a 20% price-increase yielding a mere 1% reduction in end-demand. Peakload demand fell by 4%.

However, socially “vulnerable” consumers suffered disproportionately, only achieving a 2% decrease in peakload demand. Hence, while monthly power prices rose by 18% for non-vulnerable consumers, they rose by 22% for vulnerable consumers. The results, data and study are in the data-file.

US CO2 and Methane Intensity by Basin

CO2 and methane intensities are tabulated for 300 distinct company positions across 9 distinct basins in this data-file. Using the  data, we can aggregate the total CO2 in (kg/boe) and methane leakage rates (as a percent of natural gas production) across the US’s different basins.


Covered basins include the Permian, Bakken, Eagle Ford, Marcellus/Utica, Alaska, GoM, Powder River, San Juan, Anadarko basin and DJ basin (chart above).

It is possible to rank the best companies in each basin, using the granular data, to identify industry leaders and laggards (chart below).

Global Flaring Intensity by Country

This data-file tabulates global flaring intensity in 16 countries of interest: in absolute terms (bcm per year), per barrel of oil production (mcf/bbl) and as a contribution to CO2 emissions (kg/boe).


Flaring intensity has reduced by c20% in the past quarter-century, from 0.25mcf/bbl and 12.5kg of CO2/bbl in the early 1990s to 0.2mcf/bbl and 10kg/bbl in 2019. However, total flaring rose 3.5% YoY in 2019 and is now flat on 2009, accounting for c300MTpa of global CO2 emissions. This is 1/6th of total oil industry CO2.

Industry leaders, with the lowest flaring include Saudi Arabia and the US. Laggards include West Africa, North Africa, Iran/Iraq and Venezuela (which has shown the worst deterioration in the database, since the late 1990s).

LNG’s positive role in reducing flaring stands out from the data. LNG exports were 94% correlated with Nigeria’s flaring reduction since NLNG started up in 1999. Angola has also reduced flaring by 80% since 1998, with Angola LNG “starting up” in 2013. Finally, Equatorial Guinea now has 80% lower flaring than its neighbor, Gabon, since starting up EGLNG in 2007.

Copyright: Thunder Said Energy, 2022.