This data-file breaks down US gasoline demand, as a function of vehicle miles traveled (urban and rural), GDP growth, gasoline prices and fuel economy across the US vehicle fleet. It contains monthly data on each variable, going back to 2002, so correlations can be explored.
Gasoline demand is modestly slower-than-expected in 2019, rising just +1.0% YoY, which is above the prior 15-year trend for 0.4% pa growth, but below the 1.8% expected basesd on regressions to fuel prices and GDP.
One cause is urban vehicle miles driven, where growth has slowed, defying historical correlations with GDP (strong) and gasoline prices (reasonable). Structural explanations could include the rapid rise of alternative vehicles (e.g., e-scooters), ride-sharing and policy decisions.
Please download the fileto view the data or test your own regressions.
This data-file contains all our data on the energy economics of e-scooters, a transformational technology for urban mobility, where demand has exploded in 2018 and 2019. And for good reason. The data-file includes:
Our projections of the oil demand destroyed by scooters
Our projections of the electricity demand created by scooters
Number of US travel-trips using shared bikes and scooters from 2010-18
Scooter costs versus car and taxi costs per mile
Average ranges and battery sizes of incumbent scooter models
Relative energy economics of scooters versus gasoline cars and EVs
Relative time taken to charge scooters versus EVs using solar panels
The proportion of scooter trips that replace gasoline car trips in eight cities
Profiles of the top 4 e-scooter companies
A timeline of shared mobility from 1965 to 2018.
The download will also enable you to adjust the input assumptions, to test different scenarios.
This data-file quantifies the energy efficiency of fourteen different transportation types, in mpg, miles per kWh, passenger miles per kWh and CO2 intensity per passenger mile.
“Efficiency”is calculated using an apples-to-apples methodology, comparing real-world fuel consumption to equations of mechanics (i.e., stop-starts and air resistance, per Tab 3 in the model).
Electrification generally offers a c4x efficiency gain, jumping from c15-20% on conventional oil-powered vehicles to c60-80% on electric vehicles. Hybrids and hydrogen also yield modest efficiency improvements.
Most exciting is the set of emerging, electric transportation technologies, which are faster than incumbents, yet also achieve 4-120x efficiency gains per passenger mile (chart below).
Cookies?
This website uses necessary cookies. Our cookies are simply to improve your experience. We do not undertake any advertising or targeting via our cookies. By clicking 'accept' or continuing to use the website, you consent to our use of cookies.AcceptRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.